16 research outputs found

    Herd-level risk factors associated with the presence of Phage type 21/28 E. coli O157 on Scottish cattle farms

    Get PDF
    <p>Background: E. coli O157 is a bacterial pathogen that is shed by cattle and can cause severe disease in humans. Phage type (PT) 21/28 is a subtype of E. coli O157 that is found across Scotland and is associated with particularly severe human morbidity.</p> <p>Methods: A cross-sectional survey of Scottish cattle farms was conducted in the period Feb 2002-Feb 2004 to determine the prevalence of E. coli O157 in cattle herds. Data from 88 farms on which E. coli O157 was present were analysed using generalised linear mixed models to identify risk factors for the presence of PT 21/28 specifically.</p> <p>Results: The analysis identified private water supply, and northerly farm location as risk factors for PT 21/28 presence. There was a significant association between the presence of PT 21/28 and an increased number of E. coli O157 positive pat samples from a farm, and PT 21/28 was significantly associated with larger E. coli O157 counts than non-PT 21/28 E. coli O157.</p> <p>Conclusion: PT 21/28 has significant risk factors that distinguish it from other phage types of E. coli O157. This finding has implications for the control of E. coli O157 as a whole and suggests that control could be tailored to target the locally dominant PT.</p&gt

    Pathogenic Potential to Humans of Bovine Escherichia coli O26, Scotland

    Get PDF
    Escherichia coli O26 and O157 have similar overall prevalences in cattle in Scotland, but in humans, Shiga toxin–producing E. coli O26 infections are fewer and clinically less severe than E. coli O157 infections. To investigate this discrepancy, we genotyped E. coli O26 isolates from cattle and humans in Scotland and continental Europe. The genetic background of some strains from Scotland was closely related to that of strains causing severe infections in Europe. Nonmetric multidimensional scaling found an association between hemolytic uremic syndrome (HUS) and multilocus sequence type 21 strains and confirmed the role of stx<sub>2</sub> in severe human disease. Although the prevalences of E. coli O26 and O157 on cattle farms in Scotland are equivalent, prevalence of more virulent strains is low, reducing human infection risk. However, new data on E. coli O26–associated HUS in humans highlight the need for surveillance of non-O157 enterohemorrhagic E. coli and for understanding stx<sub>2</sub> phage acquisition

    Serial passage of foot-and-mouth disease virus in sheep reveals declining levels of viraemia over time

    No full text
    If an infectious agent is to maintain itself within a closed population by means of an unbroken serial chain of infections, it must maintain the level of infectiousness of individuals through time, or termination of the transmission chain is inevitable. One possible cause of diminution in infectiousness along serial chains of transmission may be that individuals are unable to amplify and transmit comparable levels of the infectious agent. Here, the results are reported of a novel experiment designed specifically to assess the effects of serial passage of foot-and-mouth disease virus (FMDV) in experimental groups of sheep. A virus isolate taken from an epidemic of foot-and-mouth disease (FMD) characterized by rapid fade-out of infection was passed serially through four groups of sheep housed in an isolation unit. Although it was not possible to measure individual infectiousness directly, blood virus load from infected individuals was quantified using a real-time PCR assay and used as an underlying indicator of the level of infection. The results of this assay concurred well with those of the traditional tissue-culture assay and were shown to be highly repeatable. The level of peak viraemia was shown to fall significantly with the time of infection and with passage group, both in terms of the group mean and regression analysis of individual values, suggesting that this isolate of FMDV may, under certain conditions, be unable to maintain itself indefinitely in susceptible sheep populations. The results of these experiments are discussed in terms of the epidemiology of FMD in sheep

    Effect of the initial dose of foot-and-mouth disease virus on the early viral dynamics within pigs

    Get PDF
    This paper investigates the early viral dynamics of foot-and-mouth disease (FMD) within infected pigs. Using an existing within-host model, we investigate whether individual variation can be explained by the effect of the initial dose of FMD virus. To do this, we consider the experimental data on the concentration of FMD virus genomes in the blood (viral load). In this experiment, 12 pigs were inoculated with one of three different doses of FMD virus: low; medium; or high. Measurements of the viral load were recorded over a time course of approximately 11 days for every 8 hours. The model is a set of deterministic differential equations with the following variables: viral load; virus in the interstitial space; and the proportion of epithelial cells available for infection, infected and uninfected. The model was fitted to the data for each animal individually and also simultaneously over all animals varying only the initial dose. We show that the general trend in the data can be explained by varying only the initial dose. The higher the initial dose the earlier the development of a detectable viral load

    Modelling the spread of scrapie in a sheep flock: evidence for increased transmission during lambing seasons

    No full text
    Presence of scrapie infectivity in the placenta suggests the possibility of increased transmission of scrapie during the lambing season. This hypothesis was explored here using a mathematical model of scrapie transmission dynamics which has previously been successfully used to study several scrapie outbreaks in Scottish sheep flocks. It was applied here to the Langlade experimental sheep flock (INRA Toulouse, France), in which a natural scrapie epidemic started in 1993. Extensive data were available, including pedigree, scrapie histopathological diagnoses and PrP genotypes. Detailed simulations of the scrapie outbreak reveal that the observed patterns of seasonality in incidence can not be accounted for by seasonality in demography alone and provide strong support for the hypothesis of increased transmission during lambing. Observations from several other scrapie outbreaks also showing seasonal incidence patterns support these conclusion
    corecore