919 research outputs found

    Determinants of migrant career success: A study of recent skilled migrants in Australia

    Get PDF
    Australia has been aggressively pursuing skilled migrants to sustain its population and foster economic growth. However, many skilled migrants experience a downward career move upon migration to Australia. Based on a survey of recent skilled migrants, this study investigates how individual (age, years of settlement, qualifications), national/societal (citizenship and settlement), and organization‐level (climate of inclusion) factors influence their career success. Overall, we found that: (1) age at migration matters more than length of settlement in predicting skilled migrant career success; (2) citizenship uptake and living in a neighbourhood with a greater number of families from the same country of origin facilitate post‐migration career success; and (3) perceptions of one\u27s social/informal networks in the workplace – a dimension of perceived organizational climate of inclusion – also have a positive impact on migrant career outcomes

    Electroweak phase diagram at finite lepton number density

    Full text link
    We study the thermodynamics of the electroweak theory at a finite lepton number density. The phase diagram of the theory is calculated by relating the full 4-dimensional theory to a 3-dimensional effective theory which has been previously solved using nonperturbative methods. It is seen that the critical temperature increases and the value of the Higgs boson mass at which the first order phase transition line ends decreases with increasing leptonic chemical potential.Comment: 16 pages, 14 figures, RevTex4, v2: references added, minor corrections, v3: small changes, references added, published in Phys. Rev.

    Scalar Dark Matter From Theory Space

    Get PDF
    The scalar dark matter candidate in a prototypical theory space little Higgs model is investigated. We review all details of the model pertinent to dark matter. We perform a thermal relic density calculation including couplings to the gauge and Higgs sectors of the model. We find two regions of parameter space that give acceptable dark matter abundances. The first region has a dark matter candidate with a mass of order 100 GeV, the second region has a heavy candidate with a mass greater than about 500 GeV$. The dark matter candidate in either region is an admixture of an SU(2) triplet and an SU(2) singlet, thereby constituting a WIMP (weakly interacting massive particle).Comment: 18 pages, 2 figures, version to appear in PR

    Angular momenta creation in relativistic electron-positron plasma

    Get PDF
    Creation of angular momentum in a relativistic electron-positron plasma is explored. It is shown that a chain of angular momentum carrying vortices is a robust asymptotic state sustained by the generalized nonlinear Schrodinger equation characteristic to the system. The results may suggest a possible electromagnetic origin of angular momenta when it is applied to the MeV epoch of the early Universe.Comment: 20 pages, 6 figure

    Constrained Supersymmetric Flipped SU(5) GUT Phenomenology

    Full text link
    We explore the phenomenology of the minimal supersymmetric flipped SU(5) GUT model (CFSU(5)), whose soft supersymmetry-breaking (SSB) mass parameters are constrained to be universal at some input scale, MinM_{in}, above the GUT scale, MGUTM_{GUT}. We analyze the parameter space of CFSU(5) assuming that the lightest supersymmetric particle (LSP) provides the cosmological cold dark matter, paying careful attention to the matching of parameters at the GUT scale. We first display some specific examples of the evolutions of the SSB parameters that exhibit some generic features. Specifically, we note that the relationship between the masses of the lightest neutralino and the lighter stau is sensitive to MinM_{in}, as is the relationship between the neutralino mass and the masses of the heavier Higgs bosons. For these reasons, prominent features in generic (m1/2,m0)(m_{1/2}, m_0) planes such as coannihilation strips and rapid-annihilation funnels are also sensitive to MinM_{in}, as we illustrate for several cases with tan(beta)=10 and 55. However, these features do not necessarily disappear at large MinM_{in}, unlike the case in the minimal conventional SU(5) GUT. Our results are relatively insensitive to neutrino masses.Comment: 23 pages, 8 figures; (v2) added explanations and corrected typos, version to appear in EPJ

    Integrating group Delphi, fuzzy logic and expert systems for marketing strategy development:the hybridisation and its effectiveness

    Get PDF
    A hybrid approach for integrating group Delphi, fuzzy logic and expert systems for developing marketing strategies is proposed in this paper. Within this approach, the group Delphi method is employed to help groups of managers undertake SWOT analysis. Fuzzy logic is applied to fuzzify the results of SWOT analysis. Expert systems are utilised to formulate marketing strategies based upon the fuzzified strategic inputs. In addition, guidelines are also provided to help users link the hybrid approach with managerial judgement and intuition. The effectiveness of the hybrid approach has been validated with MBA and MA marketing students. It is concluded that the hybrid approach is more effective in terms of decision confidence, group consensus, helping to understand strategic factors, helping strategic thinking, and coupling analysis with judgement, etc

    Cosmological Non-Linearities as an Effective Fluid

    Full text link
    The universe is smooth on large scales but very inhomogeneous on small scales. Why is the spacetime on large scales modeled to a good approximation by the Friedmann equations? Are we sure that small-scale non-linearities do not induce a large backreaction? Related to this, what is the effective theory that describes the universe on large scales? In this paper we make progress in addressing these questions. We show that the effective theory for the long-wavelength universe behaves as a viscous fluid coupled to gravity: integrating out short-wavelength perturbations renormalizes the homogeneous background and introduces dissipative dynamics into the evolution of long-wavelength perturbations. The effective fluid has small perturbations and is characterized by a few parameters like an equation of state, a sound speed and a viscosity parameter. These parameters can be matched to numerical simulations or fitted from observations. We find that the backreaction of small-scale non-linearities is very small, being suppressed by the large hierarchy between the scale of non-linearities and the horizon scale. The effective pressure of the fluid is always positive and much too small to significantly affect the background evolution. Moreover, we prove that virialized scales decouple completely from the large-scale dynamics, at all orders in the post-Newtonian expansion. We propose that our effective theory be used to formulate a well-defined and controlled alternative to conventional perturbation theory, and we discuss possible observational applications. Finally, our way of reformulating results in second-order perturbation theory in terms of a long-wavelength effective fluid provides the opportunity to understand non-linear effects in a simple and physically intuitive way.Comment: 84 pages, 3 figure
    • 

    corecore