15 research outputs found

    Recent Advances in Understanding Particle Acceleration Processes in Solar Flares

    Full text link
    We review basic theoretical concepts in particle acceleration, with particular emphasis on processes likely to occur in regions of magnetic reconnection. Several new developments are discussed, including detailed studies of reconnection in three-dimensional magnetic field configurations (e.g., current sheets, collapsing traps, separatrix regions) and stochastic acceleration in a turbulent environment. Fluid, test-particle, and particle-in-cell approaches are used and results compared. While these studies show considerable promise in accounting for the various observational manifestations of solar flares, they are limited by a number of factors, mostly relating to available computational power. Not the least of these issues is the need to explicitly incorporate the electrodynamic feedback of the accelerated particles themselves on the environment in which they are accelerated. A brief prognosis for future advancement is offered.Comment: This is a chapter in a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011

    Interstellar Probe: Humanity's exploration of the Galaxy Begins

    Get PDF
    During the course of its evolution, our Sun and its protective magnetic bubble have plowed through dramatically different interstellar environments throughout the galaxy. The vast range of conditions of interstellar plasma, gas, dust and high-energy cosmic rays on this “solar journey” have helped shape the solar system that we live in. Today, our protective bubble, or Heliosphere, is likely about to enter a completely new regime of interstellar space that will, yet again, change the entire heliospheric interaction and how it shields us from the interstellar environment. Interstellar Probe is a mission concept to explore the mechanisms shaping our heliosphere and represents the first step beyond our home, into the interstellar cloud to understand the evolutionary journey of our Sun, Heliosphere and Solar System. The idea of an Interstellar Probe dates back to the 1960's, when also the ideas of a probe to the Sun and its poles were formed. An international team of scientists and a team of engineers at the Johns Hopkins University Applied Physics Laboratory (APL) are funded by NASA to study pragmatic mission concepts that would make a launch in the 2030's a reality. The ground breaking science enabled by such a mission spans not only the discipline of Solar and Space Physics, but also Planetary Sciences and Astrophysics. Detailed analyses including the upcoming SLS Block 2 and powerful stages demonstrate that asymptotic speeds around 7 Astronomical Units (au) per Year are already possible with a Jupiter Gravity Assist. Here, we give an overview of the science discoveries that await along the journey, including the physics of the heliospheric boundary and interstellar medium, the potential for exploration of Kuiper Belt Objects, the circum-solar dust disk and the extra-galactic background light. The scientific rationale, investigations and implementation of an Interstellar Probe are discussed including also example payload, trajectory design and operations

    The Search-Coil Magnetometer for MMS

    No full text
    International audienceThe tri-axial search-coil magnetometer (SCM) belongs to the FIELDS instrumentation suite on the Magnetospheric Multiscale (MMS) mission (Torbert et al. in Space Sci. Rev. (2014), this issue). It provides the three magnetic components of the waves from 1 Hz to 6 kHz in particular in the key regions of the Earth’s magnetosphere namely the subsolar region and the magnetotail. Magnetospheric plasmas being collisionless, such a measurement is crucial as the electromagnetic waves are thought to provide a way to ensure the conversion from magnetic to thermal and kinetic energies allowing local or global reconfigurations of the Earth’s magnetic field. The analog waveforms provided by the SCM are digitized and processed inside the digital signal processor (DSP), within the Central Electronics Box (CEB), together with the electric field data provided by the spin-plane double probe (SDP) and the axial double probe (ADP). On-board calibration signal provided by DSP allows the verification of the SCM transfer function once per orbit. Magnetic waveforms and on-board spectra computed by DSP are available at different time resolution depending on the selected mode. The SCM design is described in details as well as the different steps of the ground and in-flight calibrations

    Recent Advances in Understanding Particle Acceleration Processes in Solar Flares

    No full text
    corecore