30 research outputs found

    Surface plasmon resonance under conditions of electromagnetically induced transparency

    Full text link
    A scheme for a surface plasmon resonance system under conditions of electromagnetically induced transparency (EIT) is proposed. The system is composed of three layers: a prism, a thin metal film, and a hybrid dielectric consisting of EIT atoms and a background substance. A probe and a coupling laser beam are input. Corresponding analytical formulas are derived for the cases when one or both of the laser beams excite surface plasmon polaritons at the metal/dielectric interface. Under resonance conditions, an extremely sharp dip appears in the reflectivity-frequency spectrum of the probe field, revealing new properties of two-dimensional EIT. The reflectivity is extremely sensitive to shifts in the laser frequencies and atomic levels, and to variations of permittivity of the substrate. This EIT-SPR system may to be used for novel magnetometers and biosensors

    Talk the talk, walk the walk: Defining Critical Race Theory in research

    Get PDF
    Over the last decade there has been a noticeable growth in published works citing Critical Race Theory (CRT). This has led to a growth in interest in the UK of practical research projects utilising CRT as their framework. It is clear that research on 'race' is an emerging topic of study. What is less visible is a debate on how CRT is positioned in relation to methodic practice, substantive theory and epistemological underpinnings. The efficacy of categories of data gathering tools, both traditional and non-traditional is a discussion point here to explore the complexities underpinning decisions to advocate a CRT framework. Notwithstanding intersectional issues, a CRT methodology is recognisable by how philosophical, political and ethical questions are established and maintained in relation to racialised problematics. This paper examines these tensions in establishing CRT methodologies and explores some of the essential criteria for researchers to consider in utilising a CRT framework. © 2012 Copyright Taylor and Francis Group, LLC

    Emission spectra and intrinsic optical bistability in a two-level medium

    Full text link
    Scattering of resonant radiation in a dense two-level medium is studied theoretically with account for local field effects and renormalization of the resonance frequency. Intrinsic optical bistability is viewed as switching between different spectral patterns of fluorescent light controlled by the incident field strength. Response spectra are calculated analytically for the entire hysteresis loop of atomic excitation. The equations to describe the non-linear interaction of an atomic ensemble with light are derived from the Bogolubov-Born-Green-Kirkwood-Yvon hierarchy for reduced single particle density matrices of atoms and quantized field modes and their correlation operators. The spectral power of scattered light with separated coherent and incoherent constituents is obtained straightforwardly within the hierarchy. The formula obtained for emission spectra can be used to distinguish between possible mechanisms suggested to produce intrinsic bistability.Comment: 18 pages, 5 figure

    Resonant nonstationary amplification of polychromatic laser pulses and conical emission in an optically dense ensemble of neon metastable atoms

    Full text link
    Experimental and numerical investigation of single-beam and pump-probe interaction with a resonantly absorbing dense extended medium under strong and weak field-matter coupling is presented. Significant probe beam amplification and conical emission were observed. Under relatively weak pumping and high medium density, when the condition of strong coupling between field and resonant matter is fulfilled, the probe amplification spectrum has a form of spectral doublet. Stronger pumping leads to the appearance of a single peak of the probe beam amplification at the transition frequency. The greater probe intensity results in an asymmetrical transmission spectrum with amplification at the blue wing of the absorption line and attenuation at the red one. Under high medium density, a broad band of amplification appears. Theoretical model is based on the solution of the Maxwell-Bloch equations for a two-level system. Different types of probe transmission spectra obtained are attributed to complex dynamics of a coherent medium response to broadband polychromatic radiation of a multimode dye laser.Comment: 9 pages, 13 figures, corrected, Fig.8 was changed, to be published in Phys. Rev.

    A circle swimmer at low Reynolds number

    Full text link
    Swimming in circles occurs in a variety of situations at low Reynolds number. Here we propose a simple model for a swimmer that undergoes circular motion, generalising the model of a linear swimmer proposed by Najafi and Golestanian (Phys. Rev. E 69, 062901 (2004)). Our model consists of three solid spheres arranged in a triangular configuration, joined by two links of time-dependent length. For small strokes, we discuss the motion of the swimmer as a function of the separation angle between its links. We find that swimmers describe either clockwise or anticlockwise circular motion depending on the tilting angle in a non-trivial manner. The symmetry of the swimmer leads to a quadrupolar decay of the far flow field. We discuss the potential extensions and experimental realisation of our model.Comment: 9 pages, 9 Figure

    Dynamics of a Two-Level Medium Under the Action of Short Optical Pulses

    No full text
    corecore