27 research outputs found

    shape optimization using structural adjoint and rbf mesh morphing

    Get PDF
    Abstract Adjoint solvers are acquiring nowadays a growing importance in shape optimization especially when dealing with fluid dynamic applications; their use for structural optimization is however still limited. In this work an optimization workflow based on the synergic use of a structural continuum-discrete adjoint variable solver and the commercial morpher RBF Morphâ„¢ is presented. Shape sensitivity information with respect to the objective function is exported as deformation maps on the interested geometry and transferred to the morpher that, after a proper filtering and setup, allows to update automatically the numerical grid. By employing a gradient based logic it is finally possible to achieve an evolutionary optimization. The proposed method effectiveness is shown with two examples: a cantilever beam and a structural bracket

    Radial basis functions mesh morphing for the analysis of cracks propagation

    Get PDF
    Abstract Damage tolerant design requires the implementation of effective tools for fracture mechanics analysis suitable for complex shaped components. FEM methods are very well consolidated in this field and reliable procedures for the strength assessment of cracked parts are daily used in many industrial fields. Nevertheless the generation of the computational grid of the cracked part and its update after a certain evolution are still a challenging part of the computational workflow. Mesh morphing, that consists in the repositioning of nodal locations without changing the topology of the mesh, can be a meaningful answer to this problem as it allows the mesh updating without the need of rebuilding it from scratch. Fast Radial Basis Functions (RBF) can be used as an effective tool for enabling mesh morphing on very large meshes that are typically used in advanced industrial applications (many millions of nodes). The applicability of this concept is demonstrated in this paper exploiting state of the art tools for FEA (ANSYS Mechanical) and for advanced mesh morphing (RBF Morph ACT Extension). Proposed method is benchmarked using as a reference a circular notched bar with a surface defect. Reliability of fracture parameter extraction on the morphed mesh is first verified using as a reference literature data and ANSYS Mechanical tools based on re-meshing: different crack shapes are achieved using the new geometry as a morphing target. Crack propagation workflow is then demonstrated showing the computed shape evolution for different size and shape of the initial crack

    Fluid structure interaction analysis: vortex shedding induced vibrations

    Get PDF
    Abstract Fluid Structure Interaction (FSI) numerical modelling requires an efficient workflow to properly capture the physics involved. Computational Structural Mechanics (CSM) and Computation Fluid Dynamics (CFD) have to be coupled and at the moment there is a lack of monolithic solvers capable to tackle industrial applications that involves high fidelity models which mesh can be comprised of hundred millions of cells. This paper shows an efficient approach based on standard commercial tools. The FEM solver ANSYS® Mechanical™ is used to extract a given number of eigenmodes. Then the modal shapes are imported in the CFD solver Fluent® using the Add On RBF Morph™. Updating the modal coordinates it is possible to adapt the shape of the model by taking into account the elasticity of the CFD model. Transient analysis is faced using a time marching solution by updating the shape of the mesh at each time step (weak coupling, evaluated as single DOF systems and integrating modal forces over the CFD grid). Numerical performances and solution accuracy of this approach are analyzed on a practical application (NACA0009 Hydrofoil) for which experimental data are available. A comparison between proposed method and experiment is provided. Transient coupled solver is used for the computation of eigenvalues in water by post processing the free vibration response in calm fluid

    Sails trim optimisation using CFD and RBF mesh morphing

    Get PDF
    The study is focused on the use of mesh morphing to explore different trims of yachts sails. In particular, four trims of the fore and aft sail of a model-scale sailing yacht were modelled leading to 16 configurations in total. Sail pressure distributions were validated with wind-tunnel measurements for all the 16 configurations, and full verification and validation was performed for one of these conditions. The 16 configurations were modelled with two different approaches: generating a new mesh for each trim condition (standard method) and using a morphed version of the baseline condition. This second novel method, based on the use of radial basis functions to morph the mesh, allows the computational time of exploring different geometries with computational fluid dynamics to be significantly decreased. Good agreement is observed between the pressure distributions computed with new meshes and morphed meshes. In order to show an example of trim optimisation, a metamodel approach is defined for the estimation of the response surface using radial basis function interpolation in the parameter space. Thanks to the continuum nature of morphing approach, the optimal trim angles for the given flow condition could be verified using new full computational fluid dynamic simulations. The original full factorial map of 16 points was replaced with a new map of 9 points with an optimal space filling approach to understand the faithfulness of a reduced metamodel. In both cases optimal point is evaluated using a fine design of experiment table built using the metamodel (41 levels for each parameter). The maximum thrust is achieved at the same trim for both metamodels. Proposed method can be easily extended to a wide number of parameters. Such flexibility is demonstrated in the present paper showing the sensitivity of results with respect to apparent wind angle and heeling angle

    Comparison of numerical models for Acoustic Emission propagation

    Get PDF
    Abstract Acoustic Emissions (AE) are at the basis of extremely accurate and reliable monitoring systems. Within the SmartBench project, data regarding structural health of components are gathered in a database in order to make safety integrated, operative and smart. An accurate modelling of wave propagation is a necessary requirement for a proper design of sensor networks as well as for data interpretation. Numerical simulations of the transient behavior of structural systems are well-established in this field but, on the minus side, they are very expensive in terms of computational time and resources. This paper reports different instances of AE propagation through metallic media. Bulk waves and guided waves are both investigated by means of 2D and 3D models and resorting to different software. Obtained results are cross-checked and computational times are compared as well. As a last point, High Performance Computing is applied to the case of waves simulation in order to get a significant reduction of the required computational time

    Numerical and experimental investigation of the strength of corrugated board packages

    No full text
    The buckling behaviour of corrugated paper packages was studied by means of an experimental and theoretical analysis. Mechanical behaviour of paperboard was first evaluated experimentally, then a local geometry FEM model, able to reproduce with a very good accuracy buckling loads obtained experimentally in the standard edge compression test, was developed. In order to investigate the buckling of a complete package, a finite element ‘corrugated board’ was introduced by means of a dedicated homogenization procedure. The FEM model of the package, assembled with this new element, can accurately predict the experimental data of incipient buckling observed during the standard box compression test, despite the few degrees of freedom and the minimal computational effort. Copyright © 2003 John Wiley & Sons, Ltd

    Overview of Progress on the EU DEMO Reactor Magnet System Design

    Get PDF
    The DEMO reactor is expected to be the first application of fusion for electricity generation in the near future. To this aim, conceptual design activities are progressing in Europe (EU) under the lead of the EUROfusion Consortium in order to drive on the development of the major tokamak systems. In 2014, the activities carried out by the magnet system project team were focused on the toroidal field (TF) magnet system design and demonstrated major achievements in terms of concept proposals and of consolidated evaluations against design criteria. Several magnet system R&D activities were conducted in parallel, together with broad investigations on high temperature superconductor (HTS) technologies. In this paper, we present the outcomes of the work conducted in two areas in the 2014 magnet work program: 1) the EU inductive reactor (called DEMO1) 2014 configuration (power plant operating under inductive regime) was the basis of conceptual design activities, including further optimizations; and 2) the HTS R&D activities building upon the consolidated knowledge acquired over the past years
    corecore