15 research outputs found

    Accretion by Isolated Neutron Stars

    Get PDF
    Accretion of interstellar material by an isolated neutron star is discussed. The point I address here is the interaction between the accretion flow and the stellar magnetosphere. I show that the interchange instabilities of the magnetospheric boundary under the conditions of interest are basically suppressed. The entry of the material into the magnetosphere is governed by diffusion. Due to this reason the persistent accretion luminosity of isolated neutron stars is limited to < 4E+26 erg/s. These objects can also appear as X-ray bursters with the burst durations of about 30 minutes and repetition time of about 1E+5 yr. This indicates that the number of the accreting isolated neutron stars which could be observed with recent and modern X-ray missions is a few orders of magnitude smaller than that previously estimated.Comment: 3 pages, to appear in Astrophysics and Space Science, in the proceedings of "Isolated Neutron Stars: from the Interior to the Surface", edited by D. Page, R. Turolla and S. Zan

    Localizability of Tachyonic Particles and Neutrinoless Double Beta Decay

    Get PDF
    The quantum field theory of superluminal (tachyonic) particles is plagued with a number of problems, which include the Lorentz non-invariance of the vacuum state, the ambiguous separation of the field operator into creation and annihilation operators under Lorentz transformations, and the necessity of a complex reinterpretation principle for quantum processes. Another unsolved question concerns the treatment of subluminal components of a tachyonic wave packets in the field-theoretical formalism, and the calculation of the time-ordered propagator. After a brief discussion on related problems, we conclude that rather painful choices have to be made in order to incorporate tachyonic spin-1/2 particles into field theory. We argue that the field theory needs to be formulated such as to allow for localizable tachyonic particles, even if that means that a slight unitarity violation is introduced into the S matrix, and we write down field operators with unrestricted momenta. We find that once these choices have been made, the propagator for the neutrino field can be given in a compact form, and the left-handedness of the neutrino as well as the right-handedness of the antineutrino follow naturally. Consequences for neutrinoless double beta decay and superluminal propagation of neutrinos are briefly discussed.Comment: 12 pages, 5 figure

    Systematic review on the use of patient-reported outcome measures in brain tumor studies: part of the Response Assessment in Neuro-Oncology Patient-Reported Outcome (RANO-PRO) initiative

    Get PDF
    Background. The Response Assessment in Neuro-Oncology Patient-Reported Outcome (RANO-PRO) working group aims to provide guidance on the use of PROs in brain tumor patients. PRO measures should be of high quality, both in terms of relevance and other measurement properties. This systematic review aimed to identify PRO measures that have been used in brain tumor studies to date.Methods. A systematic literature search for articles published up to June 25, 2020 was conducted in several electronic databases. Pre-specified inclusion criteria were used to identify studies using PRO measures assessing symptoms, (instrumental) activities of daily living [(I)ADL] or health-related quality of life (HRQoL) in adult patients with glioma, meningioma, primary central nervous system lymphoma, or brain metastasis.Results. A total of 215 different PRO measures were identified in 571 published and 194 unpublished studies. The identified PRO measures include brain tumor-specific, cancer-specific, and generic instruments, as well as instruments designed for other indications or multi- or single-item study-specific questionnaires. The most frequently used instruments were the EORT QLQ-C30 and QLQ-BN20 (n = 286 and n = 247),and the FACT-Br (n = 167), however, the majority of the instruments were used only once or twice (150/215).Conclusion. Many different PRO measures assessing symptoms, (I)ADL or HROoL have been used in brain tumor studies to date. Future research should clarify whether these instruments or their wales/items exhibit good content validity and other measurement properties for use in brain tumor patients.Neurolog

    General Overview of Black Hole Accretion Theory

    Full text link
    I provide a broad overview of the basic theoretical paradigms of black hole accretion flows. Models that make contact with observations continue to be mostly based on the four decade old alpha stress prescription of Shakura & Sunyaev (1973), and I discuss the properties of both radiatively efficient and inefficient models, including their local properties, their expected stability to secular perturbations, and how they might be tied together in global flow geometries. The alpha stress is a prescription for turbulence, for which the only existing plausible candidate is that which develops from the magnetorotational instability (MRI). I therefore also review what is currently known about the local properties of such turbulence, and the physical issues that have been elucidated and that remain uncertain that are relevant for the various alpha-based black hole accretion flow models.Comment: To be published in Space Science Reviews and as hard cover in the Space Sciences Series of ISSI: The Physics of Accretion on to Black Holes (Springer Publisher

    Pulsar Wind Nebulae with Bow Shocks: Non-thermal Radiation and Cosmic Ray Leptons

    Get PDF
    Pulsars with high spin-down power produce relativistic winds radiating a non-negligible fraction of this power over the whole electromagnetic range from radio to gamma-rays in the pulsar wind nebulae (PWNe). The rest of the power is dissipated in the interactions of the PWNe with the ambient interstellar medium (ISM). Some of the PWNe are moving relative to the ambient ISM with supersonic speeds producing bow shocks. In this case, the ultrarelativistic particles accelerated at the termination surface of the pulsar wind may undergo reacceleration in the converging flow system formed by the plasma outflowing from the wind termination shock and the plasma inflowing from the bow shock. The presence of magnetic perturbations in the flow, produced by instabilities induced by the accelerated particles themselves, is essential for the process to work. A generic outcome of this type of reacceleration is the creation of particle distributions with very hard spectra, such as are indeed required to explain the observed spectra of synchrotron radiation with photon indices Γ≲ 1.5. The presence of this hard spectral component is specific to PWNe with bow shocks (BSPWNe). The accelerated particles, mainly electrons and positrons, may end up containing a substantial fraction of the shock ram pressure. In addition, for typical ISM and pulsar parameters, the e+ released by these systems in the Galaxy are numerous enough to contribute a substantial fraction of the positrons detected as cosmic ray (CR) particles above few tens of GeV and up to several hundred GeV. The escape of ultrarelativistic particles from a BSPWN—and hence, its appearance in the far-UV and X-ray bands—is determined by the relative directions of the interstellar magnetic field, the velocity of the astrosphere and the pulsar rotation axis. In this respect we review the observed appearance and multiwavelength spectra of three different types of BSPWNe: PSR J0437-4715, the Guitar and Lighthouse nebulae, and Vela-like objects. We argue that high resolution imaging of such objects provides unique information both on pulsar winds and on the ISM. We discuss the interpretation of imaging observations in the context of the model outlined above and estimate the BSPWN contribution to the positron flux observed at the Earth

    Kinetic Plasma Physics

    No full text

    Pulsar Wind Nebulae with Bow Shocks: Non-thermal Radiation and Cosmic Ray Leptons

    No full text
    corecore