303 research outputs found
Hydrogen-Helium Mixtures at High Pressure
The properties of hydrogen-helium mixtures at high pressure are crucial to
address important questions about the interior of Giant planets e.g. whether
Jupiter has a rocky core and did it emerge via core accretion? Using path
integral Monte Carlo simulations, we study the properties of these mixtures as
a function of temperature, density and composition. The equation of state is
calculated and compared to chemical models. We probe the accuracy of the ideal
mixing approximation commonly used in such models. Finally, we discuss the
structure of the liquid in terms of pair correlation functions.Comment: Proceedings article of the 5th Conference on Cryocrystals and Quantum
Crystals in Wroclaw, Poland, submitted to J. Low. Temp. Phys. (2004
The thermodynamic evolution of the cosmological event horizon
By manipulating the integral expression for the proper radius of the
cosmological event horizon (CEH) in a Friedmann-Robertson-Walker (FRW)
universe, we obtain an analytical expression for the change \dd R_e in
response to a uniform fluctuation \dd\rho in the average cosmic background
density . We stipulate that the fluctuation arises within a vanishing
interval of proper time, during which the CEH is approximately stationary, and
evolves subsequently such that \dd\rho/\rho is constant. The respective
variations 2\pi R_e \dd R_e and \dd E_e in the horizon entropy and
enclosed energy should be therefore related through the cosmological
Clausius relation. In that manner we find that the temperature of the CEH
at an arbitrary time in a flat FRW universe is , which recovers
asymptotically the usual static de Sitter temperature. Furthermore, it is
proven that during radiation-dominance and in late times the CEH conforms to
the fully dynamical First Law T_e \drv S_e = P\drv V_e - \drv E_e, where
is the enclosed volume and is the average cosmic pressure.Comment: 6 page
Singularities in scalar-tensor gravity
The analysis of certain singularities in scalar-tensor gravity contained in a
recent paper is completed, and situations are pointed out in which these
singularities cannot occur.Comment: 6 pages, LaTe
Scale invariant scalar metric fluctuations during inflation: non-perturbative formalism from a 5D vacuum
We extend to 5D an approach of a 4D non-perturbative formalism to study
scalar metric fluctuations of a 5D Riemann-flat de Sitter background metric. In
contrast with the results obtained in 4D, the spectrum of cosmological scalar
metric fluctuations during inflation can be scale invariant and the background
inflaton field can take sub-Planckian values.Comment: final version to be published in Eur. Phys. J.
A confirmation of agreement of different approaches for scalar gauge-invariant metric perturbations during inflation
We revisit an extension of the well-known formalism for gauge-invariant
scalar metric fluctuations, to study the spectrums for both, the inflaton and
gauge invariant (scalar) metric fluctuations in the framework of a single field
inflationary model where the quasi-exponential expansion is driven by an
inflation which is minimally coupled to gravity. The proposal here examined is
valid also for fluctuations with large amplitude, but for cosmological scales,
where vector and tensor perturbations can be neglected and the fluid is
irrotacional.Comment: Version accepted in EPJC with new title. 11 pages, no figure
The Big Trip and Wheeler-DeWitt equation
Of all the possible ways to describe the behavior of the universe that has
undergone a big trip the Wheeler-DeWitt equation should be the most accurate --
provided, of course, that we employ the correct formulation. In this article we
start by discussing the standard formulation introduced by Gonz\'alez-D\'iaz
and Jimenez-Madrid, and show that it allows for a simple yet efficient method
of the solution's generation, which is based on the Moutard transformation.
Next, by shedding the unnecessary restrictions, imposed on aforementioned
standard formulation we introduce a more general form of the Wheeler-DeWitt
equation. One immediate prediction of this new formula is that for the universe
the probability to emerge right after the big trip in a state with will
be maximal if and only if .Comment: accepted in Astrophysics and Space Scienc
Dislocation-Mediated Melting: The One-Component Plasma Limit
The melting parameter of a classical one-component plasma is
estimated using a relation between melting temperature, density, shear modulus,
and crystal coordination number that follows from our model of
dislocation-mediated melting. We obtain in good agreement
with the results of numerous Monte-Carlo calculations.Comment: 8 pages, LaTe
Viability of Noether symmetry of F(R) theory of gravity
Canonization of F(R) theory of gravity to explore Noether symmetry is
performed treating R - 6(\frac{\ddot a}{a} + \frac{\dot a^2}{a^2} +
\frac{k}{a^2}) = 0 as a constraint of the theory in Robertson-Walker
space-time, which implies that R is taken as an auxiliary variable. Although it
yields correct field equations, Noether symmetry does not allow linear term in
the action, and as such does not produce a viable cosmological model. Here, we
show that this technique of exploring Noether symmetry does not allow even a
non-linear form of F(R), if the configuration space is enlarged by including a
scalar field in addition, or taking anisotropic models into account.
Surprisingly enough, it does not reproduce the symmetry that already exists in
the literature (A. K. Sanyal, B. Modak, C. Rubano and E. Piedipalumbo,
Gen.Relativ.Grav.37, 407 (2005), arXiv:astro-ph/0310610) for scalar tensor
theory of gravity in the presence of R^2 term. Thus, R can not be treated as an
auxiliary variable and hence Noether symmetry of arbitrary form of F(R) theory
of gravity remains obscure. However, there exists in general, a conserved
current for F(R) theory of gravity in the presence of a non-minimally coupled
scalar-tensor theory (A. K. Sanyal, Phys.Lett.B624, 81 (2005),
arXiv:hep-th/0504021 and Mod.Phys.Lett.A25, 2667 (2010), arXiv:0910.2385
[astro-ph.CO]). Here, we briefly expatiate the non-Noether conserved current
and cite an example to reveal its importance in finding cosmological solution
for such an action, taking F(R) \propto R^{3/2}.Comment: 16 pages, 1 figure. appears in Int J Theoretical Phys (2012
Geometric and thermodynamic properties in Gauss-Bonnet gravity
In this paper, the generalized second law (GSL) of thermodynamics and entropy
is revisited in the context of cosmological models in Gauss-Bonnet gravity with
the boundary of the universe is assumed to be enclosed by the dynamical
apparent horizon. The model is best fitted with the observational data for
distance modulus. The best fitted geometric and thermodynamic parameters such
as equation of state parameter, deceleration parameter and entropy are derived.
To link between thermodynamic and geometric parameters, the "entropy rate of
change multiplied by the temperature" as a model independent thermodynamic
state parameter is also derived. The results show that the model is in good
agreement with the observational analysis.Comment: 13 pages, 13 figures, to be published in Astrophysics and Space Sc
Sedation during Spinal Anesthesia
Background: Central neuraxial anesthesia has been reported to decrease the dose of both intravenous and inhalational anesthetics needed to reach a defined level of sedation. The mechanism behind this phenomenon is speculated to be decreased afferent stimulation of the reticular activating system. The authors performed a two-part study (nonrandomized pilot study and a subsequent randomized, double-blind, placebo-controlled study) using the Bispectral Index (BIS) monitor to quantify the degree of sedation in unmedicated volunteers undergoing spinal anesthesia. Methods: Twelve volunteers underwent BIS monitoring and observer sedation scoring (Observer's Assessment of Alertness/ Sedation Scale [OAA/S]) before and after spinal anesthesia with 50 mg hyperbaric lidocaine, 5%. Subsequently, 16 volunteers blinded to the study were randomized to receive spinal anesthesia with 50 mg hyperbaric lidocaine, 5% (n ؍ 10) or placebo (n ؍ 6) and underwent BIS and OAA/S monitoring. Results: In part I, significant changes in BIS scores of the volunteers occurred progressively ( P ؍ 0.003). The greatest variations from baseline BIS measurement occurred at 30 and 70 min. In part II, there were significant decreases in OAA/S and self-sedation scores for patients receiving spinal anesthesia versus control patients (P ؍ 0.04 and 0.01, respectively). The greatest decrease in OAA/S scores occurred at 60 min. BIS scores were similar between groups (P ؍ 0.4)
- …
