1,503 research outputs found

    A survey of spinning test particle orbits in Kerr spacetime

    Get PDF
    We investigate the dynamics of the Papapetrou equations in Kerr spacetime. These equations provide a model for the motion of a relativistic spinning test particle orbiting a rotating (Kerr) black hole. We perform a thorough parameter space search for signs of chaotic dynamics by calculating the Lyapunov exponents for a large variety of initial conditions. We find that the Papapetrou equations admit many chaotic solutions, with the strongest chaos occurring in the case of eccentric orbits with pericenters close to the limit of stability against plunge into a maximally spinning Kerr black hole. Despite the presence of these chaotic solutions, we show that physically realistic solutions to the Papapetrou equations are not chaotic; in all cases, the chaotic solutions either do not correspond to realistic astrophysical systems, or involve a breakdown of the test-particle approximation leading to the Papapetrou equations (or both). As a result, the gravitational radiation from bodies spiraling into much more massive black holes (as detectable, for example, by LISA, the Laser Interferometer Space Antenna) should not exhibit any signs of chaos.Comment: Submitted to Phys. Rev. D. Follow-up to gr-qc/0210042. Figures are low-resolution in order to satisfy archive size constraints; a high-resolution version is available at http://www.michaelhartl.com/papers

    An analysis of the FIR/RADIO Continuum Correlation in the Small Magellanic Cloud

    Full text link
    The local correlation between far-infrared (FIR) emission and radio-continuum (RC) emission for the Small Magellanic Cloud (SMC) is investigated over scales from 3 kpc to 0.01 kpc. Here, we report good FIR/RC correlation down to ~15 pc. The reciprocal slope of the FIR/RC emission correlation (RC/FIR) in the SMC is shown to be greatest in the most active star forming regions with a power law slope of ~1.14 indicating that the RC emission increases faster than the FIR emission. The slope of the other regions and the SMC are much flatter and in the range of 0.63-0.85. The slopes tend to follow the thermal fractions of the regions which range from 0.5 to 0.95. The thermal fraction of the RC emission alone can provide the expected FIR/RC correlation. The results are consistent with a common source for ultraviolet (UV) photons heating dust and Cosmic Ray electrons (CRe-s) diffusing away from the star forming regions. Since the CRe-s appear to escape the SMC so readily, the results here may not provide support for coupling between the local gas density and the magnetic field intensity.Comment: 19 pages, 7 Figure

    Configurations of Entrepreneurial Orientation, Knowledge Management, and Positional Advantage: A Comparative Analysis between Native and Immigrant Entrepreneurial Firms (abstract only)

    Get PDF
    Entrepreneurial firms survive and ultimately succeed when they are able to marshal their resources into productive advantages. The entrepreneurial orientation (EO) and knowledge management (KM) process are broadly seen as antecedents to such an outcome. However, the interplay between EO and KM elements through a configurational approach is still unaccounted for. Moreover, the existing literature is replete with single solutions for entrepreneurs and managers. But, advancements in configuration theory suggest that EO may combine with elements of KM in different ways to create separate but equifinal pathways to performance. In addition, the contingency theory suggests that these configurational paths are contextually dependent. Moreover, contingency theory also proffers that these configurational pathways may differ for native versus immigrant entrepreneurial firms. To address these research gaps, we perform a fuzzyset qualitative comparative analysis (fsQCA) on data collected from service-oriented firms owned by native and immigrant entrepreneurs in Malaysia. Our results identify that configurational paths vary based on the types of firms. Four causal pathways are identified for immigrant entrepreneurial firms and five pathways for native firms. Although EO is critical for both types of firms, different configurational paths of KM elements are identified, which are further complemented by positional advantages in achieving performance success. We opine that knowledge acquisition and application ensure intelligent conversion of EO behaviour. Secondly, EO itself can create valuable knowledge; thereby, the acquisition and application are bypassed, and knowledge conversion and protection becoming critical for holistic success

    Solar Flares and Coronal Mass Ejections: A Statistically Determined Flare Flux-CME Mass Correlation

    Full text link
    In an effort to examine the relationship between flare flux and corresponding CME mass, we temporally and spatially correlate all X-ray flares and CMEs in the LASCO and GOES archives from 1996 to 2006. We cross-reference 6,733 CMEs having well-measured masses against 12,050 X-ray flares having position information as determined from their optical counterparts. For a given flare, we search in time for CMEs which occur 10-80 minutes afterward, and we further require the flare and CME to occur within +/-45 degrees in position angle on the solar disk. There are 826 CME/flare pairs which fit these criteria. Comparing the flare fluxes with CME masses of these paired events, we find CME mass increases with flare flux, following an approximately log-linear, broken relationship: in the limit of lower flare fluxes, log(CME mass)~0.68*log(flare flux), and in the limit of higher flare fluxes, log(CME mass)~0.33*log(flare flux). We show that this broken power-law, and in particular the flatter slope at higher flare fluxes, may be due to an observational bias against CMEs associated with the most energetic flares: halo CMEs. Correcting for this bias yields a single power-law relationship of the form log(CME mass)~0.70*log(flare flux). This function describes the relationship between CME mass and flare flux over at least 3 dex in flare flux, from ~10^-7 to 10^-4 W m^-2.Comment: 28 pages, 16 figures, accepted to Solar Physic

    On the application of radio frequency voltages to ion traps via helical resonators

    Full text link
    Ions confined using a Paul trap require a stable, high voltage and low noise radio frequency (RF) potential. We present a guide for the design and construction of a helical coil resonator for a desired frequency that maximises the quality factor for a set of experimental constraints. We provide an in-depth analysis of the system formed from a shielded helical coil and an ion trap by treating the system as a lumped element model. This allows us to predict the resonant frequency and quality factor in terms of the physical parameters of the resonator and the properties of the ion trap. We also compare theoretical predictions with experimental data for different resonators, and predict the voltage applied to the ion trap as a function of the Q-factor, input power and the properties of the resonant circuit

    Perspectives on the future of manufacturing within the Industry 4.0 era

    Get PDF
    The technological choices facing the manufacturing industry are vast and complex as the industry contemplates the increasing levels of digitization and automation in readiness for the modern competitive age. These changes broadly categorized as Industry 4.0, offer significant transformation challenges and opportunities, impacting a multitude of operational aspects of manufacturing organizations. As manufacturers seek to deliver increased levels of productivity and adaptation by innovating many aspects of their business and operational processes, significant challenges and barriers remain. The roadmap toward Industry 4.0 is complex and multifaceted, as manufacturers seek to transition toward new and emerging technologies, whilst retaining operational effectiveness and a sustainability focus. This study approaches many of these significant themes by presenting a critical evaluation of the core topics impacting the next generation of manufacturers, challenges and key barriers to implementation. These factors are further evaluated via the presentation of a new Industry 4.0 framework and alignment of I4.0 themes with the UN Sustainability Goals

    Diffusion-limited reactions and mortal random walkers in confined geometries

    Full text link
    Motivated by the diffusion-reaction kinetics on interstellar dust grains, we study a first-passage problem of mortal random walkers in a confined two-dimensional geometry. We provide an exact expression for the encounter probability of two walkers, which is evaluated in limiting cases and checked against extensive kinetic Monte Carlo simulations. We analyze the continuum limit which is approached very slowly, with corrections that vanish logarithmically with the lattice size. We then examine the influence of the shape of the lattice on the first-passage probability, where we focus on the aspect ratio dependence: Distorting the lattice always reduces the encounter probability of two walkers and can exhibit a crossover to the behavior of a genuinely one-dimensional random walk. The nature of this transition is also explained qualitatively.Comment: 18 pages, 16 figure

    Quantum cryptography using balanced homodyne detection

    Full text link
    We report an experimental quantum key distribution that utilizes balanced homodyne detection, instead of photon counting, to detect weak pulses of coherent light. Although our scheme inherently has a finite error rate, it allows high-efficiency detection and quantum state measurement of the transmitted light using only conventional devices at room temperature. When the average photon number was 0.1, an error rate of 0.08 and "effective" quantum efficiency of 0.76 were obtained.Comment: Errors in the sentence citing ref.[20] are correcte

    In vitro neuroprotective activities of two distinct probiotic consortia

    Get PDF
    Neurodegeneration has been linked to changes in the gut microbiota and this study compares the neuroprotective capability of two bacterial consortia, known as Lab4 and Lab4b, using the established SH-SY5Y neuronal cell model. Firstly, varying total antioxidant capacities (TAC) were identified in the intact cells from each consortia and their secreted metabolites, referred to as conditioned media (CM). 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Crystal Violet (CV) assays of cell viability revealed that Lab4 CM and Lab4b CM could induce similar levels of proliferation in SH-SY5Y cells and, despite divergent TAC, possessed a comparable ability to protect undifferentiated and retinoic acid-differentiated cells from the cytotoxic actions of rotenone and undifferentiated cells from the cytotoxic actions of 1-methyl-4-phenylpyridinium iodide (MPP+). Lab4 CM and Lab4b CM also had the ability to attenuate rotenone-induced apoptosis and necrosis with Lab4b inducing the greater effect. Both consortia showed an analogous ability to attenuate intracellular reactive oxygen species accumulation in SH-SY5Y cells although the differential upregulation of genes encoding glutathione reductase and superoxide dismutase by Lab4 CM and Lab4b CM, respectively, implicates the involvement of consortia-specific antioxidative mechanisms of action. This study implicates Lab4 and Lab4b as potential neuroprotective agents and justifies their inclusion in further in vivo studies
    corecore