62 research outputs found

    Predictors of blood volatile organic compound levels in Gulf coast residents article

    Get PDF
    To address concerns among Gulf Coast residents about ongoing exposures to volatile organic compounds, including benzene, toluene, ethylbenzene, o-xylene, and m-xylene/p-xylene (BTEX), we characterized current blood levels and identified predictors of BTEX among Gulf state residents. We collected questionnaire data on recent exposures and measured blood BTEX levels in a convenience sample of 718 Gulf residents. Because BTEX is rapidly cleared from the body, blood levels represent recent exposures in the past 24 h. We compared participants' levels of blood BTEX to a nationally representative sample. Among nonsmokers we assessed predictors of blood BTEX levels using linear regression, and predicted the risk of elevated BTEX levels using modified Poisson regression. Blood BTEX levels in Gulf residents were similar to national levels. Among nonsmokers, sex and reporting recent smoky/chemical odors predicted blood BTEX. The change in log benzene was -0.26 (95% CI: -0.47, -0.04) and 0.72 (0.02, 1.42) for women and those who reported odors, respectively. Season, time spent away from home, and self-reported residential proximity to Superfund sites (within a half mile) were statistically associated with benzene only, however mean concentration was nearly an order of magnitude below that of cigarette smokers. Among these Gulf residents, smoking was the primary contributor to blood BTEX levels, but other factors were also relevant

    The guLF study: A prospective study of persons involved in the Deepwater horizon oil spill response and clean-Up

    Get PDF
    Background: The 2010 Deepwater Horizon disaster led to the largest ever marine oil spill. Individuals who worked on the spill were exposed to toxicants and stressors that could lead to adverse effects. Objectives: The GuLF STUDY was designed to investigate relationships between oil spill exposures and multiple potential physical and mental health effects. Methods: Participants were recruited by telephone from lists of individuals who worked on the oil spill response and clean-up or received safety training. Enrollment interviews between 2011 and 2013 collected information about spill-related activities, demographics, lifestyle, and health. Exposure measurements taken during the oil spill were used with questionnaire responses to characterize oil exposures of participants. Participants from Gulf states completed a home visit in which biological and environmental samples, anthropometric and clinical measurements, and additional health and lifestyle information were collected. Participants are being followed for changes in health status. Results: Thirty-two thousand six hundred eight individuals enrolled in the cohort, and 11,193 completed a home visit. Most were young (56.2% ≤ 45 years of age), male (80.8%), lived in a Gulf state (82.3%), and worked at least 1 day on the oil spill (76.5%). Workers were involved in response (18.0%), support operations (17.5%), clean-up on water (17.4%) or land (14.6%), decontamination (14.3%), and administrative support (18.3%). Using an ordinal job exposure matrix, 45% had maximum daily total hydrocarbon exposure levels ≥ 1.0 ppm. Conclusions: The GuLF STUDY provides a unique opportunity to study potential adverse health effects from the Deepwater Horizon oil spill

    Single-photon Transistors Based on the Interaction of an Emitter and Surface Plasmons

    Get PDF
    A symmetrical approach is suggested (Chang DE et al. Nat Phys 3:807, 2007) to realize a single-photon transistor, where the presence (or absence) of a single incident photon in a ‘gate’ field is sufficient to allow (prevent) the propagation of a subsequent ‘signal’ photon along the nanowire, on condition that the ‘gate’ field is symmetrically incident from both sides of an emitter simultaneously. We present a scheme for single-photon transistors based on the strong emitter-surface-plasmon interaction. In this scheme, coherent absorption of an incoming ‘gate’ photon incident along a nanotip by an emitter located near the tip of the nanotip results in a state flip in the emitter, which controls the subsequent propagation of a ‘signal’ photon in a nanowire perpendicular to the axis of the nanotip

    Meeting Report: Moving Upstream—Evaluating Adverse Upstream End Points for Improved Risk Assessment and Decision-Making

    Get PDF
    Background Assessing adverse effects from environmental chemical exposure is integral to public health policies. Toxicology assays identifying early biological changes from chemical exposure are increasing our ability to evaluate links between early biological disturbances and subsequent overt downstream effects. A workshop was held to consider how the resulting data inform consideration of an “adverse effect” in the context of hazard identification and risk assessment. Objectives Our objective here is to review what is known about the relationships between chemical exposure, early biological effects (upstream events), and later overt effects (downstream events) through three case studies (thyroid hormone disruption, antiandrogen effects, immune system disruption) and to consider how to evaluate hazard and risk when early biological effect data are available. Discussion Each case study presents data on the toxicity pathways linking early biological perturbations with downstream overt effects. Case studies also emphasize several factors that can influence risk of overt disease as a result from early biological perturbations, including background chemical exposures, underlying individual biological processes, and disease susceptibility. Certain effects resulting from exposure during periods of sensitivity may be irreversible. A chemical can act through multiple modes of action, resulting in similar or different overt effects. Conclusions For certain classes of early perturbations, sufficient information on the disease process is known, so hazard and quantitative risk assessment can proceed using information on upstream biological perturbations. Upstream data will support improved approaches for considering developmental stage, background exposures, disease status, and other factors important to assessing hazard and risk for the whole population

    Project TENDR: Targeting environmental neuro-developmental risks. the TENDR consensus statement

    Get PDF
    Children in America today are at an unacceptably high risk of developing neurodevelopmental disorders that affect the brain and nervous system including autism, attention deficit hyperactivity disorder, intellectual disabilities, and other learning and behavioral disabilities. These are complex disorders with multiple causes—genetic, social, and environmental. The contribution of toxic chemicals to these disorders can be prevented. Approach: Leading scientific and medical experts, along with children’s health advocates, came together in 2015 under the auspices of Project TENDR: Targeting Environmental Neuro-Developmental Risks to issue a call to action to reduce widespread exposures to chemicals that interfere with fetal and children’s brain development. Based on the available scientific evidence, the TENDR authors have identified prime examples of toxic chemicals and pollutants that increase children’s risks for neurodevelopmental disorders. These include chemicals that are used extensively in consumer products and that have become widespread in the environment. Some are chemicals to which children and pregnant women are regularly exposed, and they are detected in the bodies of virtually all Americans in national surveys conducted by the U.S. Centers for Disease Control and Prevention. The vast majority of chemicals in industrial and consumer products undergo almost no testing for developmental neurotoxicity or other health effects. Conclusion: Based on these findings, we assert that the current system in the United States for evaluating scientific evidence and making health-based decisions about environmental chemicals is fundamentally broken. To help reduce the unacceptably high prevalence of neurodevelopmental disorders in our children, we must eliminate or significantly reduce exposures to chemicals that contribute to these conditions. We must adopt a new framework for assessing chemicals that have the potential to disrupt brain development and prevent the use of those that may pose a risk. This consensus statement lays the foundation for developing recommendations to monitor, assess, and reduce exposures to neurotoxic chemicals. These measures are urgently needed if we are to protect healthy brain development so that current and future generations can reach their fullest potential

    Molecular biology of baculovirus and its use in biological control in Brazil

    Full text link
    • …
    corecore