11 research outputs found

    Adaptation of muscle activation after patellar loading demonstrates neural control of joint variables

    No full text
    We evaluated whether the central nervous system (CNS) chooses muscle activations not only to achieve behavioral goals but also to minimize stresses and strains within joints. We analyzed the coordination between quadriceps muscles during locomotion in rats before and after imposing a lateral force on the patella. Vastus lateralis (VL) and vastus medialis (VM) in the rat produce identical knee torques but opposing mediolateral patellar forces. If the CNS regulates internal joint stresses, we predicted that after imposing a lateral patellar load by attaching a spring between the patella and lateral femur, the CNS would reduce the ratio between VL and VM activation to minimize net mediolateral patellar forces. Our results confirmed this prediction, showing that VL activation was reduced after attaching the spring whereas VM and rectus femoris (RF) activations were not significantly changed. This adaptation was reversed after the spring was detached. These changes were not observed immediately after attaching the spring but only developed after 3¿5 days, suggesting that they reflected gradual processes rather than immediate compensatory reflexes. Overall, these results support the hypothesis that the CNS chooses muscle activations to regulate internal joint variables.Research supported by the NIH Grant Number NS086973 (MCT)

    Coordination amongst quadriceps muscles suggests neural regulation of internal joint stresses, not simplification of task performance

    No full text
    Many studies have demonstrated covariation between muscle activations during behavior, suggesting that muscles are not controlled independently. According to one common proposal, this covariation reflects simplification of task performance by the nervous system so that muscles with similar contributions to task variables are controlled together. Alternatively, this covariation might reflect regulation of low-level aspects of movements that are common across tasks, such as stresses within joints. We examined these issues by analyzing covariation patterns in quadriceps muscle activity during locomotion in rats. The three monoarticular quadriceps muscles (vastus medialis [VM], vastus lateralis [VL], and vastus intermedius [VI]) produce knee extension and so have identical contributions to task performance; the biarticular rectus femoris (RF) produces an additional hip flexion. Consistent with the proposal that muscle covariation is related to similarity of muscle actions on task variables, we found that the covariation between VM and VL was stronger than their covariations with RF. However, covariation between VM and VL was also stronger than their covariations with VI. Since all vastii have identical actions on task variables, this finding suggests that covariation between muscle activity is not solely driven by simplification of overt task performance. Instead, the preferentially strong covariation between VM and VL is consistent with the control of internal joint stresses: Since VM and VL produce opposing mediolateral forces on the patella, the high positive correlation between their activation minimizes the net mediolateral patellar force. These results provide important insights into the interpretation of muscle covariations and their role in movement control.This research was supported by NIH Grant NS086973 (M.C.T.)

    Determination of the quark coupling strength vertical bar V-ub vertical bar using baryonic decays

    No full text
    In the Standard Model of particle physics, the strength of the couplings of the b quark to the u and c quarks, vertical bar V-ub vertical bar and vertical bar V-ub vertical bar, are governed by the coupling of the quarks to the Higgs boson. Using data from the LHCb experiment at the Large Hadron Collider, the probability for the Lambda(0)(b) baryon to decay into the p mu(-)(nu) over bar (mu) final state relative to the Lambda(+)(c)mu(-)(nu) over bar (mu) final state is measured. Combined with theoretical calculations of the strong interaction and a previously measured value of vertical bar V-ub vertical bar, the first vertical bar V-ub vertical bar measurement to use a baryonic decay is performed. This measurement is consistent with previous determinations of vertical bar V-ub vertical bar using B meson decays to specific final states and confirms the existing incompatibility with those using an inclusive sample of final states
    corecore