9 research outputs found

    A spatial interaction model for deriving joint space maps of bundle compositions and market segments from pick-any/J data: An application to new product options

    Full text link
    We propose an approach for deriving joint space maps of bundle compositions and market segments from three-way (e.g., consumers x product options/benefits/features x usage situations/scenarios/time periods) pick-any/J data. The proposed latent structure multidimensional scaling procedure simultaneously extracts market segment and product option positions in a joint space map such that the closer a product option is to a particlar segment, the higher the likelihood of its being chosen by that segment. A segment-level threshold parameter is estimated that spatially delineates the bundle of product options that are predicted to be chosen by each segment. Estimates of the probability of each consumer belonging to the derived segments are simultaneously obtained. Explicit treatment of product and consumer characteristics are allowed via optional model reparameterizations of the product option locations and segment memberships. We illustrate the use of the proposed approach using an actual commercial application involving pick-any/J data gathered by a major hi-tech firm for some 23 advanced technological options for new automobiles.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47207/1/11002_2004_Article_BF00434905.pd

    Characterization of two transgene insertional mutations at pirouette, a mouse deafness locus

    No full text
    The mouse mutant ‘pirouette’ (pi) exhibits profound hearing loss and vestibular defects due to inheritance of a recessive mutation on chromosome 5. Dysfunction has been correlated with defects during maturation of sensory cells in the inner ear. As an initial step in characterizing pirouette at the genetic level, we have localized the candidate interval to a small region on central chromosome 5 by analysis of a congenic strain of pirouette mice. This region exhibits conserved synteny with human chromosome 4 and suggests that pirouette may be a genetic model of the human nonsyndromic deafness disorder DFNB25, which has been localized to 4p15.3–q12. In addition to the original spontaneous pirouette strain, we have identified and characterized 2 additional mouse strains with allelic mutations at the same locus. Analysis of the morphology in each of the 3 pirouette alleles indicated very similar early postnatal alterations in maturation of stereocilia and suggests that the gene affected in pirouette normally plays a role in building or maintaining these structures that are critical for sensory mechanotransduction
    corecore