4 research outputs found
Electronic and Magnetic Properties of Febr2
Electronic and magnetic (e-m) properties of FeBr2 have been surprisingly well
described as originating from the Fe2+ ions and their fine electronic
structure. The fine electronic structure have been evaluated taking into
account the spin-orbit (s-o) coupling, crystal-field and inter-site
spin-dependent interactions. The required magnetic doublet ground state with an
excited singlet at D=2.8 meV results from the trigonal distortion. This effect
of the trigonal distortion and a large magnetic moment of iron, of 4.4 mB, can
be theoretically derived provided the s-o coupling is correctly taking into
account. The obtained good agreement with experimental data indicates on
extremaly strong correlations of the six 3d electrons in the Fe2+ ion yielding
their full localization and the insulating state. These calculations show that
for the meaningful analysis of e-m properties of FeBr2 the spin-orbit coupling
is essentially important and that the orbital moment (0.74 mB) is largely
unquenched (by the off-cubic trigonal distortion in the presence of the
spin-orbit coupling).Comment: 11 pages in RevTex, 5 figure
Testing albendazole resistance in Fasciola hepatica
8 páginas.The egg development test is a useful in vitro tool to detect albendazole (ABZ) resistance in Fasciola
hepatica. ABZ is the only flukicidal compound with ovicidal activity. The described test is based on the
ABZ capacity to affect parasite egg development and hatching in susceptible parasites, while this
effect is lost in ABZ-resistant liver fluke isolates. Among many advantages, it is noted that the
diagnostic test can be performed on eggs isolated from fecal samples (sheep and cattle), avoiding the
sacrifice of animals necessary in controlled efficacy trials. The egg development test described here is
a simple, inexpensive, and accessible method, previously employed for diagnosis of ABZ resistance in
F. hepatica
Improving weak lensing mass map reconstructions using Gaussian and sparsity priors: Application to DES SV
Mapping the underlying density field, including non-visible dark matter, using weak gravitational lensing measurements is now a standard tool in cosmology. Due to its importance to the science results of current and upcoming surveys, the quality of the convergence reconstruction methods should be well understood. We compare three methods: Kaiser–Squires (KS), Wiener filter, and Glimpse. Kaiser–Squires is a direct inversion, not accounting for survey masks or noise. The Wiener filter is well-motivated for Gaussian density fields in a Bayesian framework. Glimpse uses sparsity, aiming to reconstruct non-linearities in the density field. We compare these methods with several tests using public Dark Energy Survey (DES) Science Verification (SV) data and realistic DES simulations. The Wiener filter and Glimpse offer substantial improvements over smoothed Kaiser–Squires with a range of metrics. Both the Wiener filter and Glimpse convergence reconstructions show a 12 per cent improvement in Pearson correlation with the underlying truth from simulations. To compare the mapping methods’ abilities to find mass peaks, we measure the difference between peak counts from simulated ΛCDM shear catalogues and catalogues with no mass fluctuations (a standard data vector when inferring cosmology from peak statistics); the maximum signal-to-noise of these peak statistics is increased by a factor of 3.5 for the Wiener filter and 9 for Glimpse. With simulations, we measure the reconstruction of the harmonic phases; the phase residuals’ concentration is improved 17 per cent by Glimpse and 18 per cent by the Wiener filter. The correlationbetween reconstructions from data and foreground redMaPPer clusters is increased 18 per cent by the Wiener filter and 32 per cent by Glimpse.ISSN:0035-8711ISSN:1365-2966ISSN:1365-871