15 research outputs found
Soybean oil treatment impairs glucose-stimulated insulin secretion and changes fatty acid composition of normal and diabetic islets
Abstract We investigated the effect of sub-chronic soybean oil (SO) treatment on the insulin secretion and fatty acid composition of islets of Langerhans obtained from Goto-Kakizaki (GK), a model of type 2 diabetes, and normal Wistar rats. We observed that soybean-treated Wistar rats present insulin resistance and defective islet insulin secretion when compared with untreated Wistar rats. The decrease in insulin secretion occurred at all concentrations of glucose and arginine tested. Furthermore we observed that soybean-treated normal islets present a significant decrease in two saturated fatty acids, myristic and heneicosanoic acids, and one monounsaturated eicosenoic acid, and the appearance of the monounsaturated erucic acid. Concerning diabetic animals, we observed that soybean-treated diabetic rats, when compared with untreated GK rats, present an increase in plasma non-fasting free fatty acids, an exacerbation of islet insulin secretion impairment in all conditions tested and a significant decrease in the monounsaturated palmitoleic acid. Altogether our results show that SO treatment results in a decrease of insulin secretion and alterations on fatty acid composition in normal and diabetic islets. Furthermore, the impairment of insulin secretion, islet erucic acid and fasting plasma insulin levels are similar in treated normal and untreated diabetic rats, suggesting that SO could have a deleterious effect on ß-cell function and insulin sensitivity
Molecular traces of alternative social organization in a termite genome
Although eusociality evolved independently within several orders of insects, research into the molecular underpinnings of the transition towards social complexity has been confined primarily to Hymenoptera (for example, ants and bees). Here we sequence the genome and stage-specific transcriptomes of the dampwood termite Zootermopsis nevadensis (Blattodea) and compare them with similar data for eusocial Hymenoptera, to better identify commonalities and differences in achieving this significant transition. We show an expansion of genes related to male fertility, with upregulated gene expression in male reproductive individuals reflecting the profound differences in mating biology relative to the Hymenoptera. For several chemoreceptor families, we show divergent numbers of genes, which may correspond to the more claustral lifestyle of these termites. We also show similarities in the number and expression of genes related to caste determination mechanisms. Finally, patterns of DNA methylation and alternative splicing support a hypothesized epigenetic regulation of caste differentiation