17 research outputs found

    Baroreflex and chemoreflex dysfunction in streptozotocin-diabetic rats

    No full text
    Several investigators have demonstrated that streptozotocin (STZ) diabetes induces changes in the autonomic control of the cardiovascular system. Changes in cardiovascular function may be related to peripheral neuropathy. The aim of the present study was to analyze changes in heart rate (HR) and arterial pressure (AP) as well as baroreflex and chemoreflex sensitivity in STZ-induced diabetic male Wistar rats (STZ, 50 mg/kg, iv, 15 days). Intra-arterial blood pressure signals were obtained for control and diabetic rats (N = 9, each group). Data were processed in a data acquisition system (CODAS, 1 kHz). Baroreflex sensitivity was evaluated by measuring heart rate changes induced by arterial pressure variation produced by phenylephrine and sodium nitroprusside injection. Increasing doses of potassium cyanide (KCN) were used to evaluate bradycardic and pressor responses evoked by chemoreflex activation. STZ induced hyperglycemia (447 ± 49 vs 126 ± 3 mg/dl), and a reduction in AP (99 ± 3 vs 118 ± 2 mmHg), resting HR (296 ± 11 vs 355 ± 16 bpm) and plasma insulin levels (16 ± 1 vs 57 ± 11 µU/ml). We also observed that the reflex bradycardia (-1.68 ± 0.1 vs -1.25 ± 0.1 bpm/mmHg, in the diabetic group) and tachycardia (-3.68 ± 0.5 vs -1.75 ± 0.3 bpm/mmHg, in the diabetic group) produced by vasopressor and depressor agents were impaired in the diabetic group. Bradycardia evoked by chemoreflex activation was attenuated in diabetic rats (control: -17 ± 1, -86 ± 19, -185 ± 18, -208 ± 17 vs diabetic: -7 ± 1, -23 ± 5, -95 ± 13, -140 ± 13 bpm), as also was the pressor response (control: 6 ± 1, 30 ± 7, 54 ± 4, 59 ± 5 vs diabetic: 6 ± 1, 8 ± 2, 33 ± 4, 42 ± 5 mmHg). In conclusion, the cardiovascular responses evoked by baroreflex and chemoreflex activation are impaired in diabetic rats. The alterations of cardiovascular responses may be secondary to the autonomic dysfunction of cardiovascular contro

    Effect of trolox C on cardiac contracture induced by hydrogen peroxide

    No full text
    Hydrogen peroxide (H2O2) perfused into the aorta of the isolated rat heart induces a positive inotropic effect, with cardiac arrhythmia such as extrasystolic potentiation or cardiac contractures, depending on the dose. The last effect is similar to the "stone heart" observed in reperfusion injury and may be ascribed to lipoperoxidation (LPO) of the membrane lipids, to protein damage, to reduction of the ATP level, to enzymatic alterations and to cardioactive compounds liberated by LPO. These effects may result in calcium overload of the cardiac fibers and contracture ("stone heart"). Hearts from male Wistar rats (300-350 g) were perfused at 31oC with Tyrode, 0.2 mM trolox C, 256 mM H2O2 or trolox C + H2O2. Cardiac contractures (baseline elevation of the myograms obtained) were observed when hearts were perfused with H2O2 (Tyrode: 5.9 ± 3.2; H2O2: 60.5 ± 13.9% of the initial value); perfusion with H2O2 increased the LPO of rat heart homogenates measured by chemiluminescence (Tyrode: 3,199 ± 259; H2O2: 5,304 ± 133 cps mg protein-1 60 min-1), oxygen uptake (Tyrode: 0.44 ± 0.1; H2O2: 3.2 ± 0.8 nmol min-1 mg protein-1) and malonaldehyde (TBARS) formation (Tyrode: 0.12 ± 0; H2O2: 0.37 ± 0.1 nmol/ml). Previous perfusion with 0.2 mM trolox C reduced the LPO (chemiluminescence: 4,098 ± 531), oxygen uptake (0.51 ± 0) and TBARS (0.13 ± 0) but did not prevent the H2O2-induced contractures (33.3 ± 16%). ATP (Tyrode: 2.84 ± 0; H2O2: 0.57 ± 0) and glycogen levels (Tyrode: 0.46 ± 0; H2O2: 0.26 ± 0) were reduced by H2O2. Trolox did not prevent these effects (ATP: 0.84 ± 0 and glycogen: 0.27 ± 0). Trolox C is known to be more effective than <!-- MVDMVD:face("Symbol") --><FONT FACE="Symbol">a</font> -tocopherol or <!-- MVDMVD:face("Symbol") --><FONT FACE="Symbol">g</font> -tocopherol in reducing LPO though it lacks the phytol portion of vitamin E to be fixed to the cell membranes. Trolox C, unlike vitamin A, did not prevent the glycogen reduction induced by H2O2. Trolox C induced a positive chronotropic effect that resulted in higher energy consumption. The reduction of energy level seemed to be more important than LPO in the mechanism of H2O2-induced contractur

    Effect of trolox C on cardiac contracture induced by hydrogen peroxide

    No full text
    Hydrogen peroxide (H2O2) perfused into the aorta of the isolated rat heart induces a positive inotropic effect, with cardiac arrhythmia such as extrasystolic potentiation or cardiac contractures, depending on the dose. The last effect is similar to the "stone heart" observed in reperfusion injury and may be ascribed to lipoperoxidation (LPO) of the membrane lipids, to protein damage, to reduction of the ATP level, to enzymatic alterations and to cardioactive compounds liberated by LPO. These effects may result in calcium overload of the cardiac fibers and contracture ("stone heart"). Hearts from male Wistar rats (300-350 g) were perfused at 31oC with Tyrode, 0.2 mM trolox C, 256 mM H2O2 or trolox C + H2O2. Cardiac contractures (baseline elevation of the myograms obtained) were observed when hearts were perfused with H2O2 (Tyrode: 5.9 ± 3.2; H2O2: 60.5 ± 13.9% of the initial value); perfusion with H2O2 increased the LPO of rat heart homogenates measured by chemiluminescence (Tyrode: 3,199 ± 259; H2O2: 5,304 ± 133 cps mg protein-1 60 min-1), oxygen uptake (Tyrode: 0.44 ± 0.1; H2O2: 3.2 ± 0.8 nmol min-1 mg protein-1) and malonaldehyde (TBARS) formation (Tyrode: 0.12 ± 0; H2O2: 0.37 ± 0.1 nmol/ml). Previous perfusion with 0.2 mM trolox C reduced the LPO (chemiluminescence: 4,098 ± 531), oxygen uptake (0.51 ± 0) and TBARS (0.13 ± 0) but did not prevent the H2O2-induced contractures (33.3 ± 16%). ATP (Tyrode: 2.84 ± 0; H2O2: 0.57 ± 0) and glycogen levels (Tyrode: 0.46 ± 0; H2O2: 0.26 ± 0) were reduced by H2O2. Trolox did not prevent these effects (ATP: 0.84 ± 0 and glycogen: 0.27 ± 0). Trolox C is known to be more effective than <!-- MVDMVD:face("Symbol") --><FONT FACE="Symbol">a</font> -tocopherol or <!-- MVDMVD:face("Symbol") --><FONT FACE="Symbol">g</font> -tocopherol in reducing LPO though it lacks the phytol portion of vitamin E to be fixed to the cell membranes. Trolox C, unlike vitamin A, did not prevent the glycogen reduction induced by H2O2. Trolox C induced a positive chronotropic effect that resulted in higher energy consumption. The reduction of energy level seemed to be more important than LPO in the mechanism of H2O2-induced contractur

    Oxidative stress in the latissimus dorsi muscle of diabetic rats

    No full text
    The purpose of the present study was to investigate the effects of experimental diabetes on the oxidant and antioxidant status of latissimus dorsi (LD) muscles of male Wistar rats (220 ± 5 g, N = 11). Short-term (5 days) diabetes was induced by a single injection of streptozotocin (STZ, 50 mg/kg, iv; glycemia >300 mg/dl). LD muscle of STZ-diabetic rats presented higher levels of thiobarbituric acid reactive substances (TBARS) and chemiluminescence (0.36 ± 0.02 nmol/mg protein and 14706 ± 1581 cps/mg protein) than LD muscle of normal rats (0.23 ± 0.04 nmol/mg protein and 7389 ± 1355 cps/mg protein). Diabetes induced a 92% increase in catalase and a 27% increase in glutathione S-transferase activities in LD muscle. Glutathione peroxidase activity was reduced (58%) in STZ-diabetic rats and superoxide dismutase activity was similar in LD muscle of both groups. A positive correlation was obtained between catalase activity and the oxidative stress of LD, as evaluated in terms of TBARS (r = 0.78) and by chemiluminescence (r = 0.89). Catalase activity also correlated inversely with glutathione peroxidase activity (r = 0.79). These data suggest that an increased oxidative stress in LD muscle of diabetic rats may be related to skeletal muscle myopathy

    Hemodialysis improves endothelial venous function in end-stage renal disease

    No full text
    The objective of the present study was to determine the acute effect of hemodialysis on endothelial venous function and oxidative stress. We studied 9 patients with end-stage renal disease (ESRD), 36.8 ± 3.0 years old, arterial pressure 133.8 ± 6.8/80.0 ± 5.0 mmHg, time on dialysis 55.0 ± 16.6 months, immediately before and after a hemodialysis session, and 10 healthy controls matched for age and gender. Endothelial function was assessed by the dorsal hand vein technique using graded local infusion of acetylcholine (endothelium-dependent venodilation, EDV) and sodium nitroprusside (endothelium-independent venodilation). Oxidative stress was evaluated by measuring protein oxidative damage (carbonyls) and antioxidant defense (total radical trapping antioxidant potential - TRAP) in blood samples. All patients were receiving recombinant human erythropoietin for at least 3 months and were not taking nitrates or a-receptor antagonists. EDV was significantly lower in ESRD patients before hemodialysis (65.6 ± 10.5) vs controls (109.6 ± 10.8; P = 0.010) and after hemodialysis (106.6 ± 15.7; P = 0.045). Endothelium-independent venodilation was similar in all comparisons performed. The hemodialysis session significantly decreased TRAP (402.0 ± 53.5 vs 157.1 ± 28.3 U Trolox/µL plasma; P = 0.001). There was no difference in protein damage comparing ESRD patients before and after hemodialysis. The magnitude of change in the EDV was correlated negatively with the magnitude of change in TRAP (r = -0.70; P = 0.037). These results suggest that a hemodialysis session improves endothelial venous function, in association with an antioxidant effect
    corecore