1,099 research outputs found
Simulation and optimisation of terahertz emission from InGaAs and InP photoconductive switches
We simulate the terahertz emission from laterally-biased InGaAs and InP using
a three-dimensional carrier dynamics model in order to optimise the
semiconductor material. Incident pump-pulse parameters of current Ti:Sapphire
and Er:fibre lasers are chosen, and the simulation models the semiconductor's
bandstructure using parabolic Gamma, L and X valleys, and heavy holes. The
emitted terahertz radiation is propagated within the semiconductor and into
free space using a model based on the Drude-Lorentz dielectric function. As the
InGaAs alloy approaches InAs an increase in the emitted power is observed, and
this is attributed to a greater electron mobility. Additionally,
low-temperature grown and ion-implanted InGaAs are modelled using a finite
carrier trapping time. At sub-picosecond trapping times the terahertz bandwidth
is found to increase significantly at the cost of a reduced emission power.Comment: 9 pages, 7 figure
Aspects of Superembeddings
Some aspects of the geometry of superembeddings and its application to
supersymmetric extended objects are discussed. In particular, the embeddings of
(3|16) and (6|16) dimensional superspaces into (11|32) dimensional superspace,
corresponding to supermembranes and superfivebranes in eleven dimensions, are
treated in some detail.Comment: 13 pages, Latex, Contribution to Supersymmetry and Quantum Field
Theory, International Seminar dedicated to the memory of D. V. Volkov
(Kharkov, 1997), some clarifications are mad
Mathematical analysis of the equivalent impedance at the harmonic frequency for the proposed aircraft power system
The proposals for the `More Electric Aircraft' place a significant, increased demand on the electrical power distribution system. To increase safety and reduce aircraft maintenance times on the ground, there is a greater need to quickly identify and locate electrical faults within the electrical distribution system. The work presented in this study provides the mathematical basis for the use of power system harmonic impedance measurement for identifying and locating faults within power cables. The method is passive - that is, it does not require the injection of any test signals - and can potentially be embedded into a centralised equipment controller to provide intelligent, real time diagnostics. The method monitors the harmonic line-line self-impedance at strategic points in the distribution system; this is obtained by measuring load voltage and current. Faults can be identified and located within a few fundamental cycles, and therefore provides a `backup protection' system which does not require measurement of the line current. It also can provide details of the fault location and could therefore be a significant aid to aircraft maintenance. This study derives the theoretical basis of the scheme and provides simulation results for a proposed aircraft power system to demonstrate the validity of this approach to detect and locate faults within the system
Haloperidol and Ziprasidone for Treatment of Delirium in Critical Illness
BACKGROUND:
There are conflicting data on the effects of antipsychotic medications on delirium in patients in the intensive care unit (ICU).
METHODS:
In a randomized, double-blind, placebo-controlled trial, we assigned patients with acute respiratory failure or shock and hypoactive or hyperactive delirium to receive intravenous boluses of haloperidol (maximum dose, 20 mg daily), ziprasidone (maximum dose, 40 mg daily), or placebo. The volume and dose of a trial drug or placebo was halved or doubled at 12-hour intervals on the basis of the presence or absence of delirium, as detected with the use of the Confusion Assessment Method for the ICU, and of side effects of the intervention. The primary end point was the number of days alive without delirium or coma during the 14-day intervention period. Secondary end points included 30-day and 90-day survival, time to freedom from mechanical ventilation, and time to ICU and hospital discharge. Safety end points included extrapyramidal symptoms and excessive sedation.
RESULTS:
Written informed consent was obtained from 1183 patients or their authorized representatives. Delirium developed in 566 patients (48%), of whom 89% had hypoactive delirium and 11% had hyperactive delirium. Of the 566 patients, 184 were randomly assigned to receive placebo, 192 to receive haloperidol, and 190 to receive ziprasidone. The median duration of exposure to a trial drug or placebo was 4 days (interquartile range, 3 to 7). The median number of days alive without delirium or coma was 8.5 (95% confidence interval [CI], 5.6 to 9.9) in the placebo group, 7.9 (95% CI, 4.4 to 9.6) in the haloperidol group, and 8.7 (95% CI, 5.9 to 10.0) in the ziprasidone group (P=0.26 for overall effect across trial groups). The use of haloperidol or ziprasidone, as compared with placebo, had no significant effect on the primary end point (odds ratios, 0.88 [95% CI, 0.64 to 1.21] and 1.04 [95% CI, 0.73 to 1.48], respectively). There were no significant between-group differences with respect to the secondary end points or the frequency of extrapyramidal symptoms.
CONCLUSIONS:
The use of haloperidol or ziprasidone, as compared with placebo, in patients with acute respiratory failure or shock and hypoactive or hyperactive delirium in the ICU did not significantly alter the duration of delirium. (Funded by the National Institutes of Health and the VA Geriatric Research Education and Clinical Center; MIND-USA ClinicalTrials.gov number, NCT01211522 .)
Super D-branes from BRST Symmetry
Recently a new formalism has been developed for the covariant quantization of
superstrings. We study properties of Dp-branes and p-branes in this new
framework, focusing on two different topics: effective actions and boundary
states for Dp-branes. We present a derivation of the Wess-Zumino terms for
super (D)p-branes using BRST symmetry. To achieve this we derive the BRST
symmetry for superbranes, starting from the approach with/without pure spinors,
and completely characterize the WZ terms as elements of the BRST cohomology. We
also develope the boundary state description of Dp-branes by analyzing the
boundary conditions for open strings in the completely covariant (i.e., without
pure spinors) BRST formulation.Comment: 31 pp; journal version, expended discussion of D-brane pure spinor
constraints in Section 2.
Solar Flares and Coronal Mass Ejections: A Statistically Determined Flare Flux-CME Mass Correlation
In an effort to examine the relationship between flare flux and corresponding
CME mass, we temporally and spatially correlate all X-ray flares and CMEs in
the LASCO and GOES archives from 1996 to 2006. We cross-reference 6,733 CMEs
having well-measured masses against 12,050 X-ray flares having position
information as determined from their optical counterparts. For a given flare,
we search in time for CMEs which occur 10-80 minutes afterward, and we further
require the flare and CME to occur within +/-45 degrees in position angle on
the solar disk. There are 826 CME/flare pairs which fit these criteria.
Comparing the flare fluxes with CME masses of these paired events, we find CME
mass increases with flare flux, following an approximately log-linear, broken
relationship: in the limit of lower flare fluxes, log(CME mass)~0.68*log(flare
flux), and in the limit of higher flare fluxes, log(CME mass)~0.33*log(flare
flux). We show that this broken power-law, and in particular the flatter slope
at higher flare fluxes, may be due to an observational bias against CMEs
associated with the most energetic flares: halo CMEs. Correcting for this bias
yields a single power-law relationship of the form log(CME mass)~0.70*log(flare
flux). This function describes the relationship between CME mass and flare flux
over at least 3 dex in flare flux, from ~10^-7 to 10^-4 W m^-2.Comment: 28 pages, 16 figures, accepted to Solar Physic
A Geometric Picture of Entanglement and Bell Inequalities
We work in the real Hilbert space H_s of hermitian Hilbert-Schmid operators
and show that the entanglement witness which shows the maximal violation of a
generalized Bell inequality (GBI) is a tangent functional to the convex set S
subset H_s of separable states. This violation equals the euclidean distance in
H_s of the entangled state to S and thus entanglement, GBI and tangent
functional are only different aspects of the same geometric picture. This is
explicitly illustrated in the example of two spins, where also a comparison
with familiar Bell inequalities is presented.Comment: 17 pages, 5 figures, 4 references adde
Boundary driven zero-range processes in random media
The stationary states of boundary driven zero-range processes in random media
with quenched disorder are examined, and the motion of a tagged particle is
analyzed. For symmetric transition rates, also known as the random barrier
model, the stationary state is found to be trivial in absence of boundary
drive. Out of equilibrium, two further cases are distinguished according to the
tail of the disorder distribution. For strong disorder, the fugacity profiles
are found to be governed by the paths of normalized -stable
subordinators. The expectations of integrated functions of the tagged particle
position are calculated for three types of routes.Comment: 23 page
Upper bounds for the number of quantum clones under decoherence
Published versio
Abelian Magnetic Monopole Dominance in Quark Confinement
We prove Abelian magnetic monopole dominance in the string tension of QCD.
Abelian and monopole dominance in low energy physics of QCD has been confirmed
for various quantities by recent Monte Carlo simulations of lattice gauge
theory. In order to prove this dominance, we use the reformulation of continuum
Yang-Mills theory in the maximal Abelian gauge as a deformation of a
topological field theory of magnetic monopoles, which was proposed in the
previous article by the author. This reformulation provides an efficient way
for incorporating the magnetic monopole configuration as a topological
non-trivial configuration in the functional integral. We derive a version of
the non-Abelian Stokes theorem and use it to estimate the expectation value of
the Wilson loop. This clearly exhibits the role played by the magnetic monopole
as an origin of the Berry phase in the calculation of the Wilson loop in the
manifestly gauge invariant manner. We show that the string tension derived from
the diagonal (abelian) Wilson loop in the topological field theory (studied in
the previous article) converges to that of the full non-Abelian Wilson loop in
the limit of large Wilson loop. Therefore, within the above reformulation of
QCD, this result (together with the previous result) completes the proof of
quark confinement in QCD based on the criterion of the area law of the full
non-Abelian Wilson loop.Comment: 33 pages, Latex, no figures, version accepted for publication in
Phys. Rev. D (additions of sec. 4.5 and references, and minor changes
- …