97 research outputs found

    Human chondrocyte culture models for studying cyclooxygenase expression and prostaglandin regulation of collagen gene expression

    Get PDF
    AbstractObjectiveSince articular chondrocytes and synovial fibroblasts are particularly responsive to interleukin-1 (IL-1) with respect to stimulation of prostaglandin E2(PGE2) biosynthesis, we have used them as models to examine feedback modulatory effects of PGE2, which blocks or attenuates the direct effects of IL-1β on cell-specific collagen gene expression.MethodsImmortalized human chondrocytes were developed for studying responses to cytokines and prostaglandins. Regulatory sequences of the type II collagen gene (COL2A1) in reporter gene constructs were analyzed in transient transfection experiments. Endogenous expression of COL2A1 mRNA, as well as aggrecan, biglycan, and decorin mRNAs, and IL-1-inducible cyclooxygenase (COX-2), phospholipase A2 (PLA2), and inducible nitric oxide synthetase (iNOS) mRNAs were analyzed by RT-PCR.ResultsPrevious work has shown that IL-1β inhibits, while prostaglandins stimulate COL2A1 expression. In different immortalized chondrocyte cell lines, the ability to respond to IL-1β with increased levels of COX-2, PLA2, and iNOS mRNAs depends upon expression of the differentiated chrondrocyte phenotype.ConclusionsOur studies suggest that some IL-1-induced responses in chondrocytes may require differentiation-specific transcription factors that could serve as therapeutic targets for arthritis

    217 MECHANISMS OF ACTION OF ESE1, A NOVEL TRANSCRIPTIONAL REGULATOR OF CARTILAGE REMODELING, IN MMP-13 REGULATION

    Get PDF
    Ischemic preconditioning (IPC) limits myocardial infarct size through the activation of the PI3K-Akt signal cascade; however, little is known about the roles of individual PI3K isoforms in cardioprotection. We aimed, therefore, to elucidate the role of the PI3K alpha isoform in cardioprotection Pharmacological PI3K alpha inhibition was assessed in isolated-perfused mouse hearts subjected to ischemia/reperfusion injury (IRI), either during the IPC procedure or at reperfusion. PI3K alpha inhibition abrogated the IPC-induced protective effect at reperfusion, but not when given only during the IPC protocol. These results were confirmed in an in vivo model. Moreover, pharmacological PI3K alpha activation by insulin at reperfusion was sufficient to confer cardioprotection against IRI. In addition, PI3K alpha was shown to be expressed and activated in mouse cardiomyocytes, mouse cardiac endothelial cells, as well as in mouse and human heart tissue. Furthermore, PI3K alpha was shown to mediate its effect though the inhibition of mitochondrial permeability transition pore opening. In conclusion, PI3K alpha activity is required during the early reperfusion phase to reduce myocardial infarct size. This suggests that strategies specifically enhancing the alpha isoform of PI3K at reperfusion promote tissue salvage and as such, and could provide a direct target for clinical treatment of IRI.Fundacion Rafael del Pino FONDECYT 3160298 British Heart Foundation Cancer Research UK C23338/A15965 UK NIHR University College London Hospitals Biomedical Research Centr

    Lentiviral shRNA knock-down of ADAMTS-5 and-9 restores matrix deposition in 3D chondrocyte culture

    Get PDF
    Aggrecan is one of the two major constituents of articular cartilage, and during diseases such as osteoarthritis (OA) it is subject to degradation by proteolytic enzymes. The primary proteases responsible for aggrecan cleavage are the aggrecanases, identified as members of the ADAMTS family of proteases, which are upregulated in response to inflammatory stimuli. It is uncertain which of the six aggrecanases (ADAMTS‐1, ‐4, ‐5, ‐8, ‐9 and ‐15) are primarily responsible for the degradation of aggrecan in human cartilage. Here we show that four of the six aggrecanases are expressed in immortalized chondrocyte cell‐lines and can be upregulated in response to inflammatory cytokines. Using RNA interference, we demonstrate robust knock‐down of ADAMTS‐5 and ‐9 expression in these cells and, by culturing them on three‐dimensional (3D) scaffolds, show that reduction in expression of ADAMTS‐5 enzyme results in an increase in matrix deposition. These data suggest that the quality of tissue‐engineered cartilage matrix might be improved by targeted depletion of aggrecanase expression. Moreover, this work also provides further evidence that ADAMTS‐5 may be a therapeutic target in the treatment of arthritic disease

    A misplaced lncRNA causes brachydactyly in humans

    Get PDF
    Translocations are chromosomal rearrangements that are frequently associated with a variety of disease states and developmental disorders. We identified 2 families with brachydactyly type E (BDE) resulting from different translocations affecting chromosome 12p. Both translocations caused downregulation of the parathyroid hormone-like hormone (PTHLH) gene by disrupting the cis-regulatory landscape. Using chromosome conformation capturing, we identified a regulator on chromosome 12q that interacts in cis with PTHLH over a 24.4-megabase distance and in trans with the sex-determining region Y-box 9 (SOX9) gene on chromosome 17q. The element also harbored a long noncoding RNA (lncRNA). Silencing of the lncRNA, PTHLH, or SOX9 revealed a feedback mechanism involving an expression-dependent network in humans. In the BDE patients, the human lncRNA was upregulated by the disrupted chromosomal association. Moreover, the lncRNA occupancy at the PTHLH locus was reduced. Our results document what we believe to be a novel in cis- and in trans-acting DNA and lncRNA regulatory feedback element that is reciprocally regulated by coding genes. Furthermore, our findings provide a systematic and combinatorial view of how enhancers encoding lncRNAs may affect gene expression in normal development

    Inkjet-based biopatterning of bone morphogenetic protein-2 to spatially control calvarial bone formation

    Get PDF
    The purpose of this study was to demonstrate spatial control of osteoblast differentiation in vitro and bone formation in vivo using inkjet bioprinting technology and to create three-dimensional persistent bio-ink patterns of bone morphogenetic protein-2 (BMP-2) and its modifiers immobilized within microporous scaffolds. Semicircular patterns of BMP-2 were printed within circular DermaMatrix™ human allograft scaffold constructs. The contralateral halves of the constructs were unprinted or printed with BMP-2 modifiers, including the BMP-2 inhibitor, noggin. Printed bio-ink pattern retention was validated using fluorescent or 125I-labeled bio-inks. Mouse C2C12 progenitor cells cultured on patterned constructs differentiated in a dose-dependent fashion toward an osteoblastic fate in register to BMP-2 patterns. The fidelity of spatial restriction of osteoblastic differentiation at the boundary between neighboring BMP-2 and noggin patterns improved in comparison with patterns without noggin. Acellular DermaMatrix constructs similarly patterned with BMP-2 and noggin were then implanted into a mouse calvarial defect model. Patterns of bone formation in vivo were comparable with patterned responses of osteoblastic differentiation in vitro. These results demonstrate that three-dimensional biopatterning of a growth factor and growth factor modifier within a construct can direct cell differentiation in vitro and tissue formation in vivo in register to printed patterns. © 2010 Mary Ann Liebert, Inc

    Innovative organotypic in vitro models for safety assessment: aligning with regulatory requirements and understanding models of the heart, skin, and liver as paradigms

    Get PDF
    The development of improved, innovative models for the detection of toxicity of drugs, chemicals, or chemicals in cosmetics is crucial to efficiently bring new products safely to market in a cost-effective and timely manner. In addition, improvement in models to detect toxicity may reduce the incidence of unexpected post-marketing toxicity and reduce or eliminate the need for animal testing. The safety of novel products of the pharmaceutical, chemical, or cosmetics industry must be assured; therefore, toxicological properties need to be assessed. Accepted methods for gathering the information required by law for approval of substances are often animal methods. To reduce, refine, and replace animal testing, innovative organotypic in vitro models have emerged. Such models appear at different levels of complexity ranging from simpler, self-organized three-dimensional (3D) cell cultures up to more advanced scaffold-based co-cultures consisting of multiple cell types. This review provides an overview of recent developments in the field of toxicity testing with in vitro models for three major organ types: heart, skin, and liver. This review also examines regulatory aspects of such models in Europe and the UK, and summarizes best practices to facilitate the acceptance and appropriate use of advanced in vitro models
    • …
    corecore