3 research outputs found

    Membrane Microvesicles as Actors in the Establishment of a Favorable Prostatic Tumoral Niche: A Role for Activated Fibroblasts and CX3CL1-CX3CR1 Axis

    Get PDF
    Tumor microenvironment is enriched in plasma membrane microvesicles (MV) shed from all cell types that constitute the tumor mass, reflecting the antigenic profile of the cells they originate from. Fibroblasts and tumor cells mutually communicate within tumor microenvironment. Recent evidences suggest that tumor-derived MVs (TMV) exert a broad array of biological functions in cell-to-cell communication. To elucidate their role in cancer-to-fibroblast cell communication, TMV obtained from two prostate carcinoma cell lines with high and weak metastatic potential (PC3 and LnCaP, respectively) have been characterized. TMV exhibit matrix metalloproteinases (MMP) and extracellular MMP inducer at their surface, suggesting a role in extracellular matrix degradation. Moreover, TMV not only induce the activation of fibroblasts assessed through extracellular signal-regulated kinase 1/2 phosphorylation and MMP-9 up-regulation, increase motility and resistance to apoptosis but also promote MV shedding from activated fibroblasts able in turn to increase migration and invasion of highly metastatic PC3 cells but not LnCaP cells. PC3 cell chemotaxis seems, at least partially, dependent on membrane-bound CX3CL1/fractalkine ligand for chemokine receptor CX3CR1. The present results highlight a mechanism of mutual communication attributable not only to soluble factors but also to determinants harbored by MV, possibly contributing to the constitution of a favorable niche for cancer development. [Cancer Res 2009;69(3):785–93

    Cyclooxygenase-2-Derived Prostacyclin Protective Role on Endotoxin-Induced Mouse Cardiomyocyte Mortality

    Get PDF
    Cardiovascular dysfunction characterizes septic shock, inducing multiple organ failure and a high mortality rate. In the heart, it has been shown an up-regulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expressions with subsequent overproduction of nitric oxide (NO) and eicosanoids. This study is focused on the links between these products of inflammation and cell loss of mouse cardiomyocytes during treatment by the Salmonella typhimurium lipopolysaccharide (LPS) in presence or in absence of NOS or COX inhibitors. LPS induced RelA/NF-ÎşB p65 activation, iNOS and COX-2 up-regulations, resulting in NO and prostacyclin releases. These effects were reversed by the NO-synthase inhibitor and increased by the specific COX-2 inhibitor. Immunostainings with FITC-conjugated anti-Annexin-V and propidium iodide and caspase 3/7 activity assay showed that cardiomyocyte necrosis was inhibited by L-NA during LPS treatment challenge, while apoptosis was induced in presence of both LPS and NS-398. No effect on LPS cellular injury was observed using the specific cyclooxygenase-1 (COX-1) inhibitor, SC-560. These findings strongly support the hypothesis of a link between iNOS-dependent NO overproduction and LPS-induced cell loss with a selective protective role allotted to COX-2 and deriving prostacyclins

    Microparticles harboring Sonic Hedgehog promote angiogenesis through the upregulation of adhesion proteins and proangiogenic factors

    Get PDF
    Microparticles (MPs) are small fragments generated from the plasma membrane after cell stimulation or apoptosis. We have recently shown that MPs harboring the morphogen Sonic Hedgehog (MPsShh+) correct endothelial injury by release of nitric oxide from endothelial cells [Agouni, Mostefai, Porro, Carusio, Favre, Richard, Henrion, Martínez and Andriantsitohaina (2007) FASEB J., 21, 2735–2741]. Here, we show that MPsShh+ induce the formation of capillary-like structures in an in vitro model using human endothelial cells, although they inhibited cell migration. Besides, MPsShh+ regulate cell proliferation. Both cell adhesion and expression of proteins involved in this process such as Rho A and phosphorylation of focal-activated kinase were increased by MPsShh+, via a Rho-associated coiled-coil-containing protein kinase inhibitor-sensitive pathway. We demonstrate that MPsShh+ increase messenger RNA and protein levels of proangiogenic factors as measured by quantitative reverse transcription–polymerase chain reaction and western blot. In spite of vascular endothelial growth factor expression, conditioned media from endothelial cells treated avec MPsShh+ reduces angiogenesis. Interestingly, the effects induced by MPsShh+ on the formation of capillary-like structures, expression of adhesion molecules and proangiogenic factors were reversed after silencing of the Shh receptor, using small interfering RNA or when Sonic Hedgehog (Shh) signaling was pharmacologically inhibited with cyclopamine. Taken together, we show that Shh carried by MPsShh+ regulate angiogenesis probably through both a direct and an indirect mechanisms, and we propose that MPs harboring Shh may contribute to the generation of a vascular network in pathologies associated with tumor growth
    corecore