3 research outputs found

    Hypoxia in the central Arabian Gulf Exclusive Economic Zone (EEZ) of Qatar during summer season

    No full text
    Abstract One of the most fascinating and unexpected discoveries during the Qatar University Marine Expeditions to the marine Exclusive Economic Zone (EEZ) of Qatar in 2000–2001, was the detection of a hypoxic water layer in the central region of the Arabian Gulf in waters deeper than 50 m. Hypoxia was defined as the region where the concentration of dissolved oxygen was less than 2 mg L−1. This article presents the discovery of hypoxia in the Arabian Gulf, based on samples collected (mainly during evening or night time) from vertical profiles along transects of the EEZ of Qatar and analyzed for physico-chemical properties, nutrients and chlorophyll-a. Hypoxia occurred in the summer months caused by an interaction between physical stratification of the water column that prevents oxygen replenishment, and biological respiration that consumes oxygen. Strong south-westerly winds (the SW monsoon) from June to September drive the relatively low-salinity nutrient-rich surface water from the Arabian Sea/Arabian Gulf (Sea of Oman) through the Strait of Hormuz into the central-Arabian Gulf, and this surface current penetration fertilizes the deep central-Arabian Gulf during the summer period. A strong seasonal pycnocline is formed between deeper waters at an ambient temperature of 20.9 °C and surface waters at 31.9 °C. This prevents the mixing of supersaturated O2 (>100–130%) water from the upper layer that would otherwise raise concentrations of dissolved oxygen below the thermocline, thus resulting in deep water hypoxia, i.e. dissolved oxygen levels of less than 0.86 ml L−1 at 17.3% saturation. These are the lowest values ever recorded for the Arabian Gulf.The calculated area of hypoxia is around 7220 square kilometers, and occurs in a layer about ≥15 m thick above the sea floor which extends toward the deep part of the Qatar Exclusive Economic Zone (EEZ). The biological consequences of this hypoxia on the sea floor are yet to be investigated

    Adult anopheline ecology and malaria transmission in irrigated areas of South Punjab, Pakistan.

    No full text
    Surface irrigation in the Punjab province of Pakistan has been carried out on a large scale since the development of the Indus Basin Irrigation System in the late 19th century. The objective of our study was to understand how the population dynamics of adult anopheline mosquitoes (Diptera: Culicidae) could be related to malaria transmission in rural areas with intensive irrigation and a history of malaria epidemics. In this paper we present our observations from three villages located along an irrigation canal in South Punjab. The study was carried out from 1 April 1999 to 31 March 2000. Mosquitoes were collected from bedrooms using the pyrethroid spraycatch method and from vegetation and animal sheds using backpack aspirators. Overall, Anopheles subpictus Grassi sensu lato predominated (55.6%), followed by An. stephensi Liston s.l. (41.4%), An. culicifacies Giles s.l. (2.0%), An. pulcherrimus Theobald (1.0%) and An. peditaeniatus Leicester (0.1%). Most mosquitoes (98.8%) were collected from indoor resting-sites whereas collections from potential resting-sites outdoors accounted for only 1.2% of total anopheline densities, confirming the endophilic behaviour of anophelines in Pakistan. Anopheles stephensi, An. culicifacies and An. subpictus populations peaked in August, September and October, respectively. High temperatures and low rainfall negatively affected seasonal abundance in our area. There were interesting differences in anopheline fauna between villages, with An. culicifacies occurring almost exclusively in the village at the head of the irrigation canal, where waterlogged and irrigated fields prevailed. Monthly house-to-house fever surveys showed that malaria transmission remained low with an overall slide positivity rate of 2.4% and all cases were due to infection with Plasmodium vivax. The most plausible explanation for low transmission in our study area seems to be the low density of Pakistan's primary malaria vector, An. culicifacies. The role of other species such as An. stephensi is not clear. Our observations indicate that, in South Punjab, irrigation-related sites support the breeding of anopheline mosquitoes, including the vectors of malaria. As our study was carried out during a year with exceptionally hot and dry climatic conditions, densities and longevity of mosquitoes would probably be higher in other years and could result in more significant malaria transmission than we observed. To assess the overall importance of irrigation-related sites in the epidemiology of malaria in the Punjab, more studies are needed to compare irrigated and non-irrigated areas
    corecore