7 research outputs found

    Ultrafast modification of the electronic structure of a correlated insulator

    Get PDF
    A nontrivial balance between Coulomb repulsion and kinematic effects determines the electronic structure of correlated electron materials. The use of electromagnetic fields strong enough to rival these native microscopic interactions allows us to study the electronic response as well as the time scales and energies involved in using quantum effects for possible applications. We use element specific transient x ray absorption spectroscopy and high harmonic generation to measure the response to ultrashort off resonant optical fields in the prototypical correlated electron insulator NiO. Surprisingly, fields of up to 0.22 V lead to no detectable changes in the correlated Ni 3d orbitals contrary to previous predictions. A transient directional charge transfer is uncovered, a behavior that is captured by first principles theory. Our results highlight the importance of retardation effects in electronic screening and pinpoints a key challenge in functionalizing correlated materials for ultrafast device operatio

    Microscopic theory for the light-induced anomalous Hall effect in graphene

    No full text
    We employ a quantum Liouville equation with relaxation to model the recently observed anomalous Hall effect in graphene irradiated by an ultrafast pulse of circularly polarized light. In the weak-field regime, we demonstrate that the Hall effect originates from an asymmetric population of photocarriers in the Dirac bands. By contrast, in the strong-field regime, the system is driven into a nonequilibrium steady state that is well described by topologically nontrivial Floquet-Bloch bands. Here, the anomalous Hall current originates from the combination of a population imbalance in these dressed bands together with a smaller anomalous velocity contribution arising from their Berry curvature. This robust and general finding enables the simulation of electrical transport from light-induced Floquet-Bloch bands in an experimentally relevant parameter regime and creates a pathway to designing ultrafast quantum devices with Floquet-engineered transport properties

    Multiple mobile excitons manifested as sidebands in quasi one dimensional metallic TaSe3

    No full text
    Charge neutrality and their expected itinerant nature makes excitons potential transmitters of information. However, exciton mobility remains inaccessible to traditional optical experiments that only create and detect excitons with negligible momentum. Here, using angle resolved photoemission spectroscopy, we detect dispersing excitons in the quasi one dimensional metallic trichalcogenide, TaSe3. The low density of conduction electrons and the low dimensionality in TaSe3 combined with a polaronic renormalization of the conduction band and the poorly screened interaction between these polarons and photo induced valence holes leads to various excitonic bound states that we interpret as intrachain and interchain excitons, and possibly trions. The thresholds for the formation of a photo hole together with an exciton appear as side valence bands with dispersions nearly parallel to the main valence band, but shifted to lower excitation energies. The energy separation between side and main valence bands can be controlled by surface doping, enabling the tuning of certain exciton propertie

    Ultrafast optical spectroscopy of strongly correlated materials and high-temperature superconductors: a non-equilibrium approach

    Get PDF
    In the last two decades non-equilibrium spectroscopies have evolved from avant-garde studies to crucial tools for expanding our understanding of the physics of strongly correlated materials. The possibility of obtaining simultaneously spectroscopic and temporal information has led to insights that are complementary to (and in several cases beyond) those attainable by studying the matter at equilibrium. From this perspective, multiple phase transitions and new orders arising from competing interactions are benchmark examples where the interplay among electrons, lattice and spin dynamics can be disentangled because of the different timescales that characterize the recovery of the initial ground state. For example, the nature of the broken-symmetry phases and of the bosonic excitations that mediate the electronic interactions, eventually leading to superconductivity or other exotic states, can be revealed by observing the sub-picosecond dynamics of impulsively excited states. Furthermore, recent experimental and theoretical developments have made it possible to monitor the time-evolution of both the single-particle and collective excitations under extreme conditions, such as those arising from strong and selective photo-stimulation. These developments are opening the way for new, non-equilibrium phenomena that can eventually be induced and manipulated by short laser pulses. Here, we review the most recent achievements in the experimental and theoretical studies of the non-equilibrium electronic, optical, structural and magnetic properties of correlated materials. The focus will be mainly on the prototypical case of correlated oxides that exhibit unconventional superconductivity or other exotic phases. The discussion will also extend to other topical systems, such as iron-based and organic superconductors, (Formula presented.) and charge-transfer insulators. With this review, the dramatically growing demand for novel experimental tools and theoretical methods, models and concepts, will clearly emerge. In particular, the necessity of extending the actual experimental capabilities and the numerical and analytic tools to microscopically treat the non-equilibrium phenomena beyond the simple phenomenological approaches represents one of the most challenging new frontiers in physics
    corecore