848 research outputs found

    Efficient measurements, purification, and bounds on the mutual information

    Full text link
    When a measurement is made on a quantum system in which classical information is encoded, the measurement reduces the observers average Shannon entropy for the encoding ensemble. This reduction, being the {\em mutual information}, is always non-negative. For efficient measurements the state is also purified; that is, on average, the observers von Neumann entropy for the state of the system is also reduced by a non-negative amount. Here we point out that by re-writing a bound derived by Hall [Phys. Rev. A {\bf 55}, 100 (1997)], which is dual to the Holevo bound, one finds that for efficient measurements, the mutual information is bounded by the reduction in the von Neumann entropy. We also show that this result, which provides a physical interpretation for Hall's bound, may be derived directly from the Schumacher-Westmoreland-Wootters theorem [Phys. Rev. Lett. {\bf 76}, 3452 (1996)]. We discuss these bounds, and their relationship to another bound, valid for efficient measurements on pure state ensembles, which involves the subentropy.Comment: 4 pages, Revtex4. v3: rewritten and reinterpreted somewha

    Exponents of quantum fixed-length pure state source coding

    Get PDF
    We derive the optimal exponent of the error probability of the quantum fixed-length pure state source coding in both cases of blind coding and visible coding. The optimal exponent is universally attained by Jozsa et al. (PRL, 81, 1714 (1998))'s universal code. In the direct part, a group representation theoretical type method is essential. In the converse part, Nielsen and Kempe (PRL, 86, 5184 (2001))'s lemma is essential.Comment: LaTeX2e and revetx4 with aps,twocolumn,superscriptaddress,showpacs,pra,amssymb,amsmath. The previous version has a mistak

    The quantum dynamic capacity formula of a quantum channel

    Get PDF
    The dynamic capacity theorem characterizes the reliable communication rates of a quantum channel when combined with the noiseless resources of classical communication, quantum communication, and entanglement. In prior work, we proved the converse part of this theorem by making contact with many previous results in the quantum Shannon theory literature. In this work, we prove the theorem with an "ab initio" approach, using only the most basic tools in the quantum information theorist's toolkit: the Alicki-Fannes' inequality, the chain rule for quantum mutual information, elementary properties of quantum entropy, and the quantum data processing inequality. The result is a simplified proof of the theorem that should be more accessible to those unfamiliar with the quantum Shannon theory literature. We also demonstrate that the "quantum dynamic capacity formula" characterizes the Pareto optimal trade-off surface for the full dynamic capacity region. Additivity of this formula simplifies the computation of the trade-off surface, and we prove that its additivity holds for the quantum Hadamard channels and the quantum erasure channel. We then determine exact expressions for and plot the dynamic capacity region of the quantum dephasing channel, an example from the Hadamard class, and the quantum erasure channel.Comment: 24 pages, 3 figures; v2 has improved structure and minor corrections; v3 has correction regarding the optimizatio

    Reversible transformations from pure to mixed states, and the unique measure of information

    Get PDF
    Transformations from pure to mixed states are usually associated with information loss and irreversibility. Here, a protocol is demonstrated allowing one to make these transformations reversible. The pure states are diluted with a random noise source. Using this protocol one can study optimal transformations between states, and from this derive the unique measure of information. This is compared to irreversible transformations where one does not have access to noise. The ideas presented here shed some light on attempts to understand entanglement manipulations and the inevitable irreversibility encountered there where one finds that mixed states can contain "bound entanglement".Comment: 10 pages, no figures, revtex4, table added, to appear in Phys. Rev.

    Realization of quantum process tomography in NMR

    Full text link
    Quantum process tomography is a procedure by which the unknown dynamical evolution of an open quantum system can be fully experimentally characterized. We demonstrate explicitly how this procedure can be implemented with a nuclear magnetic resonance quantum computer. This allows us to measure the fidelity of a controlled-not logic gate and to experimentally investigate the error model for our computer. Based on the latter analysis, we test an important assumption underlying nearly all models of quantum error correction, the independence of errors on different qubits.Comment: 8 pages, 7 EPS figures, REVTe

    Achievable rates for the Gaussian quantum channel

    Get PDF
    We study the properties of quantum stabilizer codes that embed a finite-dimensional protected code space in an infinite-dimensional Hilbert space. The stabilizer group of such a code is associated with a symplectically integral lattice in the phase space of 2N canonical variables. From the existence of symplectically integral lattices with suitable properties, we infer a lower bound on the quantum capacity of the Gaussian quantum channel that matches the one-shot coherent information optimized over Gaussian input states.Comment: 12 pages, 4 eps figures, REVTe

    An epitaxial model for heterogeneous nucleation on potent substrates

    Get PDF
    © The Minerals, Metals & Materials Society and ASM International 2012In this article, we present an epitaxial model for heterogeneous nucleation on potent substrates. It is proposed that heterogeneous nucleation of the solid phase (S) on a potent substrate (N) occurs by epitaxial growth of a pseudomorphic solid (PS) layer on the substrate surface under a critical undercooling (ΔT ). The PS layer with a coherent PS/N interface mimics the atomic arrangement of the substrate, giving rise to a linear increase of misfit strain energy with layer thickness. At a critical thickness (h ), elastic strain energy reaches a critical level, at which point, misfit dislocations are created to release the elastic strain energy in the PS layer. This converts the strained PS layer to a strainless solid (S), and changes the initial coherent PS/N interface into a semicoherent S/N interface. Beyond this critical thickness, further growth will be strainless, and solidification enters the growth stage. It is shown analytically that the lattice misfit (f) between the solid and the substrate has a strong influence on both h and ΔT ; h decreases; and ΔT increases with increasing lattice misfit. This epitaxial nucleation model will be used to explain qualitatively the generally accepted experimental findings on grain refinement in the literature and to analyze the general approaches to effective grain refinement.EPSRC Centre for Innovative Manufacturing in Liquid Metal Engineerin

    Notes on entropic characteristics of quantum channels

    Full text link
    One of most important issues in quantum information theory concerns transmission of information through noisy quantum channels. We discuss few channel characteristics expressed by means of generalized entropies. Such characteristics can often be dealt in line with more usual treatment based on the von Neumann entropies. For any channel, we show that the qq-average output entropy of degree q≄1q\geq1 is bounded from above by the qq-entropy of the input density matrix. Concavity properties of the (q,s)(q,s)-entropy exchange are considered. Fano type quantum bounds on the (q,s)(q,s)-entropy exchange are derived. We also give upper bounds on the map (q,s)(q,s)-entropies in terms of the output entropy, corresponding to the completely mixed input.Comment: 10 pages, no figures. The statement of Proposition 1 is explicitly illustrated with the depolarizing channel. The bibliography is extended and updated. More explanations. To be published in Cent. Eur. J. Phy
    • 

    corecore