1,428 research outputs found

    Hierarchy of Chaotic Maps with an Invariant Measure

    Full text link
    We give hierarchy of one-parameter family F(a,x) of maps of the interval [0,1] with an invariant measure. Using the measure, we calculate Kolmogorov-Sinai entropy, or equivalently Lyapunov characteristic exponent, of these maps analytically, where the results thus obtained have been approved with numerical simulation. In contrary to the usual one-parameter family of maps such as logistic and tent maps, these maps do not possess period doubling or period-n-tupling cascade bifurcation to chaos, but they have single fixed point attractor at certain parameter values, where they bifurcate directly to chaos without having period-n-tupling scenario exactly at these values of parameter whose Lyapunov characteristic exponent begins to be positive.Comment: 18 pages (Latex), 7 figure

    Experimental determination of the 6s^2 ^1S_0 -> 5d6s ^3 D_1 magnetic-dipole transition amplitude in atomic ytterbium

    Full text link
    We report on a measurement of the highly forbidden 6s^2 ^1S_0 \to 5d6s ^3 D_1 magnetic-dipole transition in atomic ytterbium using the Stark-interference technique. This amplitude is important in interpreting a future parity nonconservation experiment that exploits the same transition. We find  = 1.33(6)Stat(20)β×104μ0| | ~ = ~ 1.33(6)_{Stat}(20)_{\beta} \times 10^{-4} \mu_0, where the larger uncertainty comes from the previously measured vector transition polarizability β\beta. The M1M1 amplitude is small and should not limit the precision of the parity nonconservation experiment.Comment: 4 pages, 5 figures Paper resubmitted with minor corrections and additions based on comments from referee

    The factor structure of the Forms of Self-Criticising/Attacking & Self-Reassuring Scale in thirteen distinct populations

    Get PDF
    There is considerable evidence that self-criticism plays a major role in the vulnerability to and recovery from psychopathology. Methods to measure this process, and its change over time, are therefore important for research in psychopathology and well-being. This study examined the factor structure of a widely used measure, the Forms of Self-Criticising/Attacking & Self-Reassuring Scale in thirteen nonclinical samples (N = 7510) from twelve different countries: Australia (N = 319), Canada (N = 383), Switzerland (N = 230), Israel (N = 476), Italy (N = 389), Japan (N = 264), the Netherlands (N = 360), Portugal (N = 764), Slovakia (N = 1326), Taiwan (N = 417), the United Kingdom 1 (N = 1570), the United Kingdom 2 (N = 883), and USA (N = 331). This study used more advanced analyses than prior reports: a bifactor item-response theory model, a two-tier item-response theory model, and a non-parametric item-response theory (Mokken) scale analysis. Although the original three-factor solution for the FSCRS (distinguishing between Inadequate-Self, Hated-Self, and Reassured-Self) had an acceptable fit, two-tier models, with two general factors (Self-criticism and Self-reassurance) demonstrated the best fit across all samples. This study provides preliminary evidence suggesting that this two-factor structure can be used in a range of nonclinical contexts across countries and cultures. Inadequate-Self and Hated-Self might not by distinct factors in nonclinical samples. Future work may benefit from distinguishing between self-correction versus shame-based self-criticism.Peer reviewe

    Clones with finitely many relative R-classes

    Get PDF
    For each clone C on a set A there is an associated equivalence relation analogous to Green's R-relation, which relates two operations on A iff each one is a substitution instance of the other using operations from C. We study the clones for which there are only finitely many relative R-classes.Comment: 41 pages; proofs improved, examples adde

    Interaction energy functional for lattice density functional theory: Applications to one-, two- and three-dimensional Hubbard models

    Full text link
    The Hubbard model is investigated in the framework of lattice density functional theory (LDFT). The single-particle density matrix γij\gamma_{ij} with respect the lattice sites is considered as the basic variable of the many-body problem. A new approximation to the interaction-energy functional W[γ]W[\gamma] is proposed which is based on its scaling properties and which recovers exactly the limit of strong electron correlations at half-band filling. In this way, a more accurate description of WW is obtained throughout the domain of representability of γij\gamma_{ij}, including the crossover from weak to strong correlations. As examples of applications results are given for the ground-state energy, charge-excitation gap, and charge susceptibility of the Hubbard model in one-, two-, and three-dimensional lattices. The performance of the method is demonstrated by comparison with available exact solutions, with numerical calculations, and with LDFT using a simpler dimer ansatz for WW. Goals and limitations of the different approximations are discussed.Comment: 25 pages and 8 figures, submitted to Phys. Rev.

    Magnetic properties of the three-dimensional Hubbard model at half filling

    Full text link
    We study the magnetic properties of the 3d Hubbard model at half-filling in the TPSC formalism, previously developed for the 2d model. We focus on the N\'eel transition approached from the disordered side and on the paramagnetic phase. We find a very good quantitative agreement with Dynamical Mean-Field results for the isotropic 3d model. Calculations on finite size lattices also provide satisfactory comparisons with Monte Carlo results up to the intermediate coupling regime. We point out a qualitative difference between the isotropic 3d case, and the 2d or anisotropic 3d cases for the double occupation factor. Even for this local correlation function, 2d or anisotropic 3d cases are out of reach of DMF: this comes from the inability of DMF to account for antiferromagnetic fluctuations, which are crucial.Comment: RevTex, 9 pages +10 figure

    The anapole moment and nucleon weak interactions

    Get PDF
    From the recent measurement of parity nonconservation (PNC) in the Cs atom we have extracted the constant of the nuclear spin dependent electron-nucleon PNC interaction, κ=0.442(63)\kappa = 0.442 (63); the anapole moment constant, κa=0.364(62)\kappa_a = 0.364 (62); the strength of the PNC proton-nucleus potential, gp=7.3±1.2(exp.)±1.5(theor.)g_p = 7.3 \pm 1.2 (exp.) \pm 1.5 (theor.); the π\pi-meson-nucleon interaction constant, fπhπ1=[9.5±2.1(exp.)±3.5(theor.)]×107f_\pi \equiv h_\pi^{1} = [9.5 \pm 2.1 (exp.) \pm 3.5 (theor.)] \times 10^{-7}; and the strength of the neutron-nucleus potential, gn=1.7±0.8(exp.)±1.3(theor.)g_n = -1.7 \pm 0.8 (exp.) \pm 1.3 (theor.).Comment: Uses RevTex, 12 pages. We have added an explanation of the effect of finite nuclear siz

    Selberg Supertrace Formula for Super Riemann Surfaces III: Bordered Super Riemann Surfaces

    Full text link
    This paper is the third in a sequel to develop a super-analogue of the classical Selberg trace formula, the Selberg supertrace formula. It deals with bordered super Riemann surfaces. The theory of bordered super Riemann surfaces is outlined, and the corresponding Selberg supertrace formula is developed. The analytic properties of the Selberg super zeta-functions on bordered super Riemann surfaces are discussed, and super-determinants of Dirac-Laplace operators on bordered super Riemann surfaces are calculated in terms of Selberg super zeta-functions.Comment: 43 pages, amste
    corecore