We study the magnetic properties of the 3d Hubbard model at half-filling in
the TPSC formalism, previously developed for the 2d model. We focus on the
N\'eel transition approached from the disordered side and on the paramagnetic
phase. We find a very good quantitative agreement with Dynamical Mean-Field
results for the isotropic 3d model. Calculations on finite size lattices also
provide satisfactory comparisons with Monte Carlo results up to the
intermediate coupling regime. We point out a qualitative difference between the
isotropic 3d case, and the 2d or anisotropic 3d cases for the double occupation
factor. Even for this local correlation function, 2d or anisotropic 3d cases
are out of reach of DMF: this comes from the inability of DMF to account for
antiferromagnetic fluctuations, which are crucial.Comment: RevTex, 9 pages +10 figure