35 research outputs found

    Antiretroviral-naive and -treated HIV-1 patients can harbour more resistant viruses in CSF than in plasma

    Get PDF
    Objectives The neurological disorders in HIV-1-infected patients remain prevalent. The HIV-1 resistance in plasma and CSF was compared in patients with neurological disorders in a multicentre study. Methods Blood and CSF samples were collected at time of neurological disorders for 244 patients. The viral loads were >50 copies/mL in both compartments and bulk genotypic tests were realized. Results On 244 patients, 89 and 155 were antiretroviral (ARV) naive and ARV treated, respectively. In ARV-naive patients, detection of mutations in CSF and not in plasma were reported for the reverse transcriptase (RT) gene in 2/89 patients (2.2%) and for the protease gene in 1/89 patients (1.1%). In ARV-treated patients, 19/152 (12.5%) patients had HIV-1 mutations only in the CSF for the RT gene and 30/151 (19.8%) for the protease gene. Two mutations appeared statistically more prevalent in the CSF than in plasma: M41L (P = 0.0455) and T215Y (P = 0.0455). Conclusions In most cases, resistance mutations were present and similar in both studied compartments. However, in 3.4% of ARV-naive and 8.8% of ARV-treated patients, the virus was more resistant in CSF than in plasma. These results support the need for genotypic resistance testing when lumbar puncture is performe

    Emulating a trial of joint dynamic strategies: An application to monitoring and treatment of HIV-positive individuals

    Get PDF
    Decisions about when to start or switch a therapy often depend on the frequency with which individuals are monitored or tested. For example, the optimal time to switch antiretroviral therapy depends on the frequency with which HIV-positive individuals have HIV RNA measured. This paper describes an approach to use observational data for the comparison of joint monitoring and treatment strategies and applies the method to a clinically relevant question in HIV research: when can monitoring frequency be decreased and when should individuals switch from a first-line treatment regimen to a new regimen?. We outline the target trial that would compare the dynamic strategies of interest and then describe how to emulate it using data from HIV-positive individuals included in the HIV-CAUSAL Collaboration and the Centers for AIDS Research Network of Integrated Clinical Systems. When, as in our example, few individuals follow the dynamic strategies of interest over long periods of follow-up, we describe how to leverage an additional assumption: no direct effect of monitoring on the outcome of interest. We compare our results with and without the “no direct effect†assumption. We found little differences on survival and AIDS-free survival between strategies where monitoring frequency was decreased at a CD4 threshold of 350 cells/μl compared with 500 cells/μl and where treatment was switched at an HIV-RNA threshold of 1000 copies/ml compared with 200 copies/ml. The “no direct effect†assumption resulted in efficiency improvements for the risk difference estimates ranging from an 7- to 53-fold increase in the effective sample size

    A molecular approach to systematics of polypteriformes among osteichthyes

    No full text
    The Sarcopterygii are considered to be the living species most closely related to the ancestors of the tetrapods: they include the extinct rhipidistians, the coelacanths and the dipnoans. Furthermore, many Authors debate whether the Polypteriformes should be assigned a very peculiar place in the phylogeny of the bony fishes. To investigate the group of Polypteriformes and the Dipnoans and to provide new support for the classic morphological and molecular data and previous karyological evidence, we examined the DNA sequences of the mitochondrial genes 16S, 12S and cyt-b in two polypterids (Polypterus palmas and Erpetoichthys calabaricus) and two lungfish (Protopterus annectens and P. aethiopicus). In all the trees, Polypteriformes and Dipnoi are grouped together, while coelacanths remain as a sister group of these two. This molecular evidence supports the earliest hypotheses in which Polypteriformes were grouped in the same subclass together with the coelacanths and Dipnoi. © 2004 Taylor & Francis Group, LLC
    corecore