18 research outputs found

    The Cost of Jointness and How to Manage It

    Get PDF
    Although joint programs are typically formed to reduce costs, recent studies have suggested that joint programs experience larger cost growth than non-joint programs. To explain this phenomenon, we present a model that attributes joint program cost growth to agencies’ actions to maintain or regain their autonomy. We use this model to motivate principles for architecting joint programs and outline a process that can be used to identify opportunities for reforming current joint programs or for establishing new ones. Finally, we apply our approach to analyze joint program options for NOAA’s low-earth orbiting weather satellite program and in doing so, identify several risks facing NOAA’s current program and strategies for mitigating them.Massachusetts Institute of Technology (Sandia Corporation Excellence in Engineering Graduate Fellowship)Skolkovo Institute of Science and Technolog

    Antiretroviral-naive and -treated HIV-1 patients can harbour more resistant viruses in CSF than in plasma

    Get PDF
    Objectives The neurological disorders in HIV-1-infected patients remain prevalent. The HIV-1 resistance in plasma and CSF was compared in patients with neurological disorders in a multicentre study. Methods Blood and CSF samples were collected at time of neurological disorders for 244 patients. The viral loads were >50 copies/mL in both compartments and bulk genotypic tests were realized. Results On 244 patients, 89 and 155 were antiretroviral (ARV) naive and ARV treated, respectively. In ARV-naive patients, detection of mutations in CSF and not in plasma were reported for the reverse transcriptase (RT) gene in 2/89 patients (2.2%) and for the protease gene in 1/89 patients (1.1%). In ARV-treated patients, 19/152 (12.5%) patients had HIV-1 mutations only in the CSF for the RT gene and 30/151 (19.8%) for the protease gene. Two mutations appeared statistically more prevalent in the CSF than in plasma: M41L (P = 0.0455) and T215Y (P = 0.0455). Conclusions In most cases, resistance mutations were present and similar in both studied compartments. However, in 3.4% of ARV-naive and 8.8% of ARV-treated patients, the virus was more resistant in CSF than in plasma. These results support the need for genotypic resistance testing when lumbar puncture is performe

    Modeling the emergence of phenotypic heterogeneity in vascularized tumors

    Get PDF
    We present a mathematical study of the emergence of phenotypic heterogeneity in vascularized tumors. Our study is based on formal asymptotic analysis and numerical simulations of a system of nonlocal parabolic equations that describes the phenotypic evolution of tumor cells and their nonlinear dynamic interactions with the oxygen, which is released from the intratumoral vascular network. Numerical simulations are carried out both in the case of arbitrary distributions of intratumor blood vessels and in the case where the intratumoral vascular network is reconstructed from clinical images obtained using dynamic optical coherence tomography. The results obtained support a more in-depth theoretical understanding of the eco-evolutionary process which underpins the emergence of phenotypic heterogeneity in vascularized tumors. In particular, our results offer a theoretical basis for empirical evidence indicating that the phenotypic properties of cancer cells in vascularized tumors vary with the distance from the blood vessels, and establish a relation between the degree of tumor tissue vascularization and the level of intratumor phenotypic heterogeneity.Publisher PDFPeer reviewe

    The state of blessedness by W.W.

    No full text

    The mathematical modelling of tumour angiogenesis and invasion

    No full text
    In order to accomplish the transition from avascular to vascular growth, solid tumours secrete a diffusible substance known as tumour angiogenesis factor (TAF) into the surrounding tissue. Endothelial cells which form the lining of neighbouring blood vessels respond to this chemotactic stimulus in a well-ordered sequence of events comprising, at minimum, of a degradation of their basement membrane, migration and proliferation. Capillary sprouts are formed which migrate towards the tumour eventually penetrating it and permitting vascular growth to take place. It is during this stage of growth that the insidious process of invasion of surrounding tissues can and does take place. A model mechanism for angiogenesis is presented which includes the diffusion of the TAF into the surrounding host tissue and the response of the endothelial cells to the chemotactic stimulus. Numerical simulations of the model are shown to compare very well with experimental observations. The subsequent vascular growth of the tumour is discussed with regard to a classical reaction-diffusion pre-pattern model

    Nonlinear modeling and simulation of tumor growth

    No full text

    A user’s guide to PDE models for chemotaxis

    No full text
    Mathematical modelling of chemotaxis (the movement of biological cells or organisms in response to chemical gradients) has developed into a large and diverse discipline, whose aspects include its mechanistic basis, the modelling of specific systems and the mathematical behaviour of the underlying equations. The Keller-Segel model of chemotaxis (Keller and Segel in J Theor Biol 26:399–415, 1970; 30:225– 234, 1971) has provided a cornerstone for much of this work, its success being a consequence of its intuitive simplicity, analytical tractability and capacity to replicate key behaviour of chemotactic populations. One such property, the ability to display “auto-aggregation”, has led to its prominence as a mechanism for self-organisation of biological systems. This phenomenon has been shown to lead to finite-time blow-up under certain formulations of the model, and a large body of work has been devoted to determining when blow-up occurs or whether globally existing solutions exist. In this paper, we explore in detail a number of variations of the original Keller–Segel model. We review their formulation from a biological perspective, contrast their patterning properties, summarise key results on their analytical properties and classify their solution form. We conclude with a brief discussion and expand on some of the outstanding issues revealed as a result of this work
    corecore