32 research outputs found

    Cystic fibrosis airway epithelial Ca2+i signaling: The mechanism for the laeger agonist-mediated Ca2+i signals in human cystic fibrosis airway epithelia

    Get PDF
    In cystic fibrosis (CF) airways, abnormal epithelial ion transport likely initiates mucus stasis, resulting in persistent airway infections and chronic inflammation. Mucus clearance is regulated, in part, by activation of apical membrane receptors coupled to intracellular calcium (Ca2+ i) mobilization. We have shown that Ca2+i signals resulting from apical purinoceptor (P2Y2-R) activation are increased in CF compared with normal human airway epithelia. The present study addressed the mechanism for the larger apical P2Y2-R-dependent Ca2+i signals in CF human airway epithelia. We show that the increased Ca2+i mobilization in CF was not specific to P2Y2-Rs because it was mimicked by apical bradykinin receptor activation, and it did not result from a greater number of P2Y2-R or a more efficient coupling between P2Y2-Rs and phospholipase C-generated inositol 1,4,5-trisphosphate. Rather, the larger apical P2Y 2-R activation-promoted Ca2+i signals in CF epithelia resulted from an increased density and Ca2+ storage capacity of apically confined endoplasmic reticulum (ER) Ca2+ stores. To address whether the ER upregulation resulted from ER retention of misfolded ΔF508 CFTR or was an acquired response to chronic luminal airway infection/inflammation, three approaches were used. First, ER density was studied in normal and CF sweat duct human epithelia expressing high levels of ΔF508 CFTR, and it was found to be the same in normal and CF epithelia. Second, apical ER density was morphometrically analyzed in airway epithelia from normal subjects, ΔF508 homozygous CF patients, and a disease control, primary ciliary dyskinesia; it was found to be greater in both CF and primary ciliary dyskinesia. Third, apical ER density and P2Y2-R activation-mobilized Ca2+i, which were investigated in airway epithelia in a long term culture in the absence of luminal infection, were similar in normal and CF epithelia. To directly test whether luminal infection/inflammation triggers an up-regulation of the apically confined ER Ca2+ stores, normal airway epithelia were chronically exposed to supernatant from mucopurulent material from CF airways. Supernatant treatment expanded the apically confined ER, resulting in larger apical P2Y2-R activation-dependent Ca2+i responses, which reproduced the increased Ca2+i signals observed in CF epithelia. In conclusion, the mechanism for the larger Ca2+i signals elicited by apical P2Y2-R activation in CF airway epithelia is an expansion of the apical ER Ca2+ stores triggered by chronic luminal airway infection/inflammation. Greater ER-derived Ca2+i signals may provide a compensatory mechanism to restore, at least acutely, mucus clearance in CF airways

    Towards an understanding of neuroscience for science educators

    Get PDF
    Advances in neuroscience have brought new insights to the development of cognitive functions. These data are of considerable interest to educators concerned with how students learn. This review documents some of the recent findings in neuroscience, which is richer in describing cognitive functions than affective aspects of learning. A brief overview is presented here of the techniques used to generate data from imaging and how these findings have the possibility to inform educators. There are implications for considering the impact of neuroscience at all levels of education – from the classroom teacher and practitioner to policy. This relatively new cross-disciplinary area of research implies a need for educators and scientists to engage with each other. What questions are emerging through such dialogues between educators and scientists are likely to shed light on, for example, reward, motivation, working memory, learning difficulties, bilingualism and child development. The sciences of learning are entering a new paradigm

    Control of Ca"2"+ signalling in rat lactotrophs

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:D195658 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore