32,809 research outputs found
Frame synchronization methods based on channel symbol measurements
The current DSN frame synchronization procedure is based on monitoring the decoded bit stream for the appearance of a sync marker sequence that is transmitted once every data frame. The possibility of obtaining frame synchronization by processing the raw received channel symbols rather than the decoded bits is explored. Performance results are derived for three channel symbol sync methods, and these are compared with results for decoded bit sync methods reported elsewhere. It is shown that each class of methods has advantages or disadvantages under different assumptions on the frame length, the global acquisition strategy, and the desired measure of acquisition timeliness. It is shown that the sync statistics based on decoded bits are superior to the statistics based on channel symbols, if the desired operating region utilizes a probability of miss many orders of magnitude higher than the probability of false alarm. This operating point is applicable for very large frame lengths and minimal frame-to-frame verification strategy. On the other hand, the statistics based on channel symbols are superior if the desired operating point has a miss probability only a few orders of magnitude greater than the false alarm probability. This happens for small frames or when frame-to-frame verifications are required
A model for the formation of the active region corona driven by magnetic flux emergence
We present the first model that couples the formation of the corona of a
solar active region to a model of the emergence of a sunspot pair. This allows
us to study when, where, and why active region loops form, and how they evolve.
We use a 3D radiation MHD simulation of the emergence of an active region
through the upper convection zone and the photosphere as a lower boundary for a
3D MHD coronal model. The latter accounts for the braiding of the magnetic
fieldlines, which induces currents in the corona heating up the plasma. We
synthesize the coronal emission for a direct comparison to observations.
Starting with a basically field-free atmosphere we follow the filling of the
corona with magnetic field and plasma. Numerous individually identifiable hot
coronal loops form, and reach temperatures well above 1 MK with densities
comparable to observations. The footpoints of these loops are found where small
patches of magnetic flux concentrations move into the sunspots. The loop
formation is triggered by an increase of upwards-directed Poynting flux at
their footpoints in the photosphere. In the synthesized EUV emission these
loops develop within a few minutes. The first EUV loop appears as a thin tube,
then rises and expands significantly in the horizontal direction. Later, the
spatially inhomogeneous heat input leads to a fragmented system of multiple
loops or strands in a growing envelope.Comment: 13 pages, 10 figures, accepted to publication in A&
Magnetic Jam in the Corona of the Sun
The outer solar atmosphere, the corona, contains plasma at temperatures of
more than a million K, more than 100 times hotter that solar surface. How this
gas is heated is a fundamental question tightly interwoven with the structure
of the magnetic field in the upper atmosphere. Conducting numerical experiments
based on magnetohydrodynamics we account for both the evolving
three-dimensional structure of the atmosphere and the complex interaction of
magnetic field and plasma. Together this defines the formation and evolution of
coronal loops, the basic building block prominently seen in X-rays and extreme
ultraviolet (EUV) images. The structures seen as coronal loops in the EUV can
evolve quite differently from the magnetic field. While the magnetic field
continuously expands as new magnetic flux emerges through the solar surface,
the plasma gets heated on successively emerging fieldlines creating an EUV loop
that remains roughly at the same place. For each snapshot the EUV images
outline the magnetic field, but in contrast to the traditional view, the
temporal evolution of the magnetic field and the EUV loops can be different.
Through this we show that the thermal and the magnetic evolution in the outer
atmosphere of a cool star has to be treated together, and cannot be simply
separated as done mostly so far.Comment: Final version published online on 27 April 2015, Nature Physics 12
pages and 8 figure
Node synchronization schemes for the Big Viterbi Decoder
The Big Viterbi Decoder (BVD), currently under development for the DSN, includes three separate algorithms to acquire and maintain node and frame synchronization. The first measures the number of decoded bits between two consecutive renormalization operations (renorm rate), the second detects the presence of the frame marker in the decoded bit stream (bit correlation), while the third searches for an encoded version of the frame marker in the encoded input stream (symbol correlation). A detailed account of the operation is given, as well as performance comparison, of the three methods
Performance of Galileo's concatenated codes with nonideal interleaving
The Galileo spacecraft employs concatenated coding schemes with Reed-Solomon interleaving depth 2. The bit error rate (BER) performance of Galileo's concatenated codes, assuming different interleaving depths (including infinite interleaving depth) are compared. It is observed that Galileo's depth 2 interleaving, when used with the experimental (15, 1/4) code, requires about 0.4 to 0.5 dB additional signal-to-noise ratio to achieve the same BER performance as the concatenated code with ideal interleaving. When used with the standard (7, 1/2) code, depth 2 interleaving requires about 0.2 dB more signal-to-noise ratio than ideal interleaving
Compressed/reconstructed test images for CRAF/Cassini
A set of compressed, then reconstructed, test images submitted to the Comet Rendezvous Asteroid Flyby (CRAF)/Cassini project is presented as part of its evaluation of near lossless high compression algorithms for representing image data. A total of seven test image files were provided by the project. The seven test images were compressed, then reconstructed with high quality (root mean square error of approximately one or two gray levels on an 8 bit gray scale), using discrete cosine transforms or Hadamard transforms and efficient entropy coders. The resulting compression ratios varied from about 2:1 to about 10:1, depending on the activity or randomness in the source image. This was accomplished without any special effort to optimize the quantizer or to introduce special postprocessing to filter the reconstruction errors. A more complete set of measurements, showing the relative performance of the compression algorithms over a wide range of compression ratios and reconstruction errors, shows that additional compression is possible at a small sacrifice in fidelity
- …