127 research outputs found

    Deregulation of MUC4 in gastric adenocarcinoma: potential pathobiological implication in poorly differentiated non-signet ring cell type gastric cancer

    Get PDF
    MUC4 is a large, heavily glycosylated transmembrane mucin, that is implicated in the pathogenesis of various types of cancers. To date, no extensive study has been done to check the expression and functional significance of MUC4 in different types of gastric adenocarcinomas. Here, we report the expression profile of MUC4 in gastric adenocarcinomas and its function in poorly differentiated gastric non-signet ring cell carcinoma (non-SRCC) type cells. Immunohistochemical analysis using tissue microarray (TMA) showed a significant difference in MUC4 expression between normal adjacent (n=45) and gastric adenocarcinoma (n=83; P<0.001). MUC4 expression was not associated with tumour type, stage or with the degree of differentiation. To gain further insight into the significance of MUC4 expression in gastric non-SRCC cells, MUC4 was ectopically expressed in AGS, a poorly differentiated gastric non-signet ring cell line. The MUC4 overexpressing cells (AGS-MUC4) showed a significant increase (P<0.005) in cell motility and a decrease in cellular aggregation as compared with the vector-transfected cells. Furthermore, in vivo tumorigenicity analysis revealed that animals transplanted with the MUC4 overexpressing cells (AGS-MUC4) had a greater incidence of tumours (83%) in comparison to empty vector control (17%). In addition, the expression of MUC4 resulted in enhanced expression of total cellular ErbB2 and phosphorylated ErbB2. In conclusion, our results showed that MUC4 is overexpressed in gastric adenocarcinoma tissues, and that it has a role in promoting aggressive properties in poorly differentiated gastric non-SRCC cells through the activation of the ErbB2 oncoprotein

    Humoral immune response to MUC5AC in patients with colorectal polyps and colorectal carcinoma

    Get PDF
    BACKGROUND: MUC5AC is a secreted mucin aberrantly expressed by colorectal polyps and carcinoma. It has been hypothesized that aberrant expression of MUC5AC in colorectal carcinoma tissues increased the overall survival of patients with colorectal carcinoma. The present study investigates the incidence of naturally occurring MUC5AC antibodies in the sera of normal individuals, patients with colonic polyps and patients with advanced colorectal carcinoma. A second aim was to determine the relationship of MUC5AC antibody with the prognosis of colorectal carcinoma. METHODS: Free circulating MUC5AC antibodies were measured using an enzyme-linked immunosorbent assay with a synthetic peptide corresponding to an 8 aa. segment of MUC5AC tandem repeat region. Immunohistochemical analysis was completed to demonstrate MUC5AC expression in the polyp specimens. RESULTS: MUC5AC antibodies were detected in 6 of 22 (27.3%) healthy subjects, 9 of 20 (45%) polyp patients, 18 of 30 (60%) patients with colorectal cancer. The presence of circulating free MUC5AC antibody levels was significantly correlated with expression of MUC5AC in polyp sections. Serum MUC5AC antibody positivity was higher in patients with colon located tumors, advanced stage and poorly differentiated tumors were found negatively affecting patient survival in our study. MUC5AC antibody positivity was higher in patients with poor prognostic parameters. Disease free survival and overall survival were shorter in this group of patients. In the multivariate analysis MUC5AC antibody positivity didn't find an independent prognostic factor on prognosis. CONCLUSION: Decreased survival in colorectal carcinoma patients with MUC5AC antibody positivity may be due to a decrease in the MUC5AC expression in tumor tissues of surviving carcinoma patients

    Detection of small RNAs in Bordetella pertussis and identification of a novel repeated genetic element

    Get PDF
    Background: Small bacterial RNAs (sRNAs) have been shown to participate in the regulation of gene expression and have been identified in numerous prokaryotic species. Some of them are involved in the regulation of virulence in pathogenic bacteria. So far, little is known about sRNAs in Bordetella, and only very few sRNAs have been identified in the genome of Bordetella pertussis, the causative agent of whooping cough. Results: An in silico approach was used to predict sRNAs genes in intergenic regions of the B. pertussis genome. The genome sequences of B. pertussis, Bordetella parapertussis, Bordetella bronchiseptica and Bordetella avium were compared using a Blast, and significant hits were analyzed using RNAz. Twenty-three candidate regions were obtained, including regions encoding the already documented 6S RNA, and the GCVT and FMN riboswitches. The existence of sRNAs was verified by Northern blot analyses, and transcripts were detected for 13 out of the 20 additional candidates. These new sRNAs were named Bordetella pertussis RNAs, bpr. The expression of 4 of them differed between the early, exponential and late growth phases, and one of them, bprJ2, was found to be under the control of BvgA/BvgS two-component regulatory system of Bordetella virulence. A phylogenetic study of the bprJ sequence revealed a novel, so far undocumented repeat of ~90 bp, found in numerous copies in the Bordetella genomes and in that of other Betaproteobacteria. This repeat exhibits certain features of mobil

    Novel transposable elements from Anopheles gambiae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transposable elements (TEs) are DNA sequences, present in the genome of most eukaryotic organisms that hold the key characteristic of being able to mobilize and increase their copy number within chromosomes. These elements are important for eukaryotic genome structure and evolution and lately have been considered as potential drivers for introducing transgenes into pathogen-transmitting insects as a means to control vector-borne diseases. The aim of this work was to catalog the diversity and abundance of TEs within the <it>Anopheles gambiae </it>genome using the PILER tool and to consolidate a database in the form of a hyperlinked spreadsheet containing detailed and readily available information about the TEs present in the genome of <it>An. gambiae</it>.</p> <p>Results</p> <p>Here we present the spreadsheet named AnoTExcel that constitutes a database with detailed information on most of the repetitive elements present in the genome of the mosquito. Despite previous work on this topic, our approach permitted the identification and characterization both of previously described and novel TEs that are further described in detailed.</p> <p>Conclusions</p> <p>Identification and characterization of TEs in a given genome is important as a way to understand the diversity and evolution of the whole set of TEs present in a given species. This work contributes to a better understanding of the landscape of TEs present in the mosquito genome. It also presents a novel platform for the identification, analysis, and characterization of TEs on sequenced genomes.</p

    Differential Muc2 and Muc5ac secretion by stimulated guinea pig tracheal epithelial cells in vitro

    Get PDF
    BACKGROUND: Mucus overproduction is a characteristic of inflammatory pulmonary diseases including asthma, chronic bronchitis, and cystic fibrosis. Expression of two mucin genes, MUC2 and MUC5AC, and their protein products (mucins), is modulated in certain disease states. Understanding the signaling mechanisms that regulate the production and secretion of these major mucus components may contribute significantly to development of effective therapies to modify their expression in inflamed airways. METHODS: To study the differential expression of Muc2 and Muc5ac, a novel monoclonal antibody recognizing guinea pig Muc2 and a commercially-available antibody against human MUC5AC were optimized for recognition of specific guinea pig mucins by enzyme-linked immunosorbent assay (ELISA), Western blot, and immunohistochemistry (IHC). These antibodies were then used to analyze expression of Muc2 and another mucin subtype (likely Muc5ac) in guinea pig tracheal epithelial (GPTE) cells stimulated with a mixture of pro-inflammatory cytokines [tumor necrosis factor-Ξ± (TNF-Ξ±), interleukin 1Ξ² (IL-1Ξ²), and interferon- Ξ³ (IFN-Ξ³)]. RESULTS: The anti-Muc2 (C4) and anti-MUC5AC (45M1) monoclonal antibodies specifically recognized proteins located in Muc2-dominant small intestinal and Muc5ac-dominant stomach mucosae, respectively, in both Western and ELISA experimental protocols. IHC protocols confirmed that C4 recognizes murine small intestine mucosal proteins while 45M1 does not react. C4 and 45M1 also stained specific epithelial cells in guinea pig lung sections. In the resting state, Muc2 was recognized as a highly expressed intracellular mucin in GPTE cells in vitro. Following cytokine exposure, secretion of Muc2, but not the mucin recognized by the 45M1 antibody (likely Muc5ac), was increased from the GPTE cells, with a concomitant increase in intracellular expression of both mucins. CONCLUSION: Given the tissue specificity in IHC and the differential hybridization to high molecular weight proteins by Western blot, we conclude that the antibodies used in this study can recognize specific mucin subtypes in guinea pig airway epithelium and in proteins from GPTE cells. In addition, Muc2 is highly expressed constitutively, modulated by inflammation, and secreted differentially (as compared to Muc5ac) in GPTE cells. This finding contrasts with expression patterns in the airway epithelium of a variety of mammalian species in which only Muc5ac predominates

    Considering Transposable Element Diversification in De Novo Annotation Approaches

    Get PDF
    Transposable elements (TEs) are mobile, repetitive DNA sequences that are almost ubiquitous in prokaryotic and eukaryotic genomes. They have a large impact on genome structure, function and evolution. With the recent development of high-throughput sequencing methods, many genome sequences have become available, making possible comparative studies of TE dynamics at an unprecedented scale. Several methods have been proposed for the de novo identification of TEs in sequenced genomes. Most begin with the detection of genomic repeats, but the subsequent steps for defining TE families differ. High-quality TE annotations are available for the Drosophila melanogaster and Arabidopsis thaliana genome sequences, providing a solid basis for the benchmarking of such methods. We compared the performance of specific algorithms for the clustering of interspersed repeats and found that only a particular combination of algorithms detected TE families with good recovery of the reference sequences. We then applied a new procedure for reconciling the different clustering results and classifying TE sequences. The whole approach was implemented in a pipeline using the REPET package. Finally, we show that our combined approach highlights the dynamics of well defined TE families by making it possible to identify structural variations among their copies. This approach makes it possible to annotate TE families and to study their diversification in a single analysis, improving our understanding of TE dynamics at the whole-genome scale and for diverse species

    Epigenetic regulation of mucin genes in human cancers

    Get PDF
    Mucins are high molecular weight glycoproteins that play important roles in diagnostic and prognostic prediction and in carcinogenesis and tumor invasion. Regulation of expression of mucin genes has been studied extensively, and signaling pathways, transcriptional regulators, and epigenetic modification in promoter regions have been described. Detection of the epigenetic status of cancer-related mucin genes is important for early diagnosis of cancer and for monitoring of tumor behavior and response to targeted therapy. Effects of micro-RNAs on mucin gene expression have also started to emerge. In this review, we discuss the current views on epigenetic mechanisms of regulation of mucin genes (MUC1, MUC2, MUC3A, MUC4, MUC5AC, MUC5B, MUC6, MUC16, and MUC17) and the possible clinical applications of this epigenetic information
    • …
    corecore