32,739 research outputs found
Cross-Correlation-Function-Based Multipath Mitigation Method for Sine-BOC Signals
Global Navigation Satellite Systems (GNSS) positioning accuracy indoor and urban canyons environments are greatly affected by multipath due to distortions in its autocorrelation function. In this paper, a cross-correlation function between the received sine phased Binary Offset Carrier (sine-BOC) modulation signal and the local signal is studied firstly, and a new multipath mitigation method based on cross-correlation function for sine-BOC signal is proposed. This method is implemented to create a cross-correlation function by designing the modulated symbols of the local signal. The theoretical analysis and simulation results indicate that the proposed method exhibits better multipath mitigation performance compared with the traditional Double Delta Correlator (DDC) techniques, especially the medium/long delay multipath signals, and it is also convenient and flexible to implement by using only one correlator, which is the case of low-cost mass-market receivers
Phenological response of vegetation to upstream river flow in the Heihe Rive basin by time series analysis of MODIS data
Liquid and solid precipitation is abundant in the high elevation, upper reach of the Heihe River basin in northwestern China. The development of modern irrigation schemes in the middle reach of the basin is taking up an increasing share of fresh water resources, endangering the oasis and traditional irrigation systems in the lower reach. In this study, the response of vegetation in the Ejina Oasis in the lower reach of the Heihe River to the water yield of the upper catchment was analyzed by time series analysis of monthly observations of precipitation in the upper and lower catchment, river streamflow downstream of the modern irrigation schemes and satellite observations of vegetation index. Firstly, remotely sensed NDVI data acquired by Terra-MODIS are used to monitor the vegetation dynamic for a seven years period between 2000 and 2006. Due to cloud-contamination, atmospheric influence and different solar and viewing angles, however, the quality and consistence of time series of remotely sensed NDVI data are degraded. A Fourier Transform method – the Harmonic Analysis of Time Series (HANTS) algorithm – is used to reconstruct cloud- and noise-free NDVI time series data from the Terra-MODIS NDVI dataset. Modification is made on HANTS by adding additional parameters to deal with large data gaps in yearly time series in combination with a Temporal-Similarity-Statistics (TSS) method developed in this study to seek for initial values for the large gap periods. Secondly, the same Fourier Transform method is used to model time series of the vegetation phenology. The reconstructed cloud-free NDVI time series data are used to study the relationship between the water availability (i.e. the local precipitation and upstream water yield) and the evolution of vegetation conditions in Ejina Oasis from 2000 to 2006. Anomalies in precipitation, streamflow, and vegetation index are detected by comparing each year with the average year. The results showed that: the previous year total runoff had a significant relationship with the vegetation growth in Ejina Oasis and that anomalies in the spring monthly runoff of the Heihe River influenced the phenology of vegetation in the entire oasis. Warmer climate expressed by the degree-days showed positive influence on the vegetation phenology in particular during drier years. The time of maximum green-up is uniform throughout the oasis during wetter years, but showed a clear S-N gradient (downstream) during drier years
Strong Structural Controllability of Systems on Colored Graphs
This paper deals with structural controllability of leader-follower networks.
The system matrix defining the network dynamics is a pattern matrix in which a
priori given entries are equal to zero, while the remaining entries take
nonzero values. The network is called strongly structurally controllable if for
all choices of real values for the nonzero entries in the pattern matrix, the
system is controllable in the classical sense. In this paper we introduce a
more general notion of strong structural controllability which deals with the
situation that given nonzero entries in the system's pattern matrix are
constrained to take identical nonzero values. The constraint of identical
nonzero entries can be caused by symmetry considerations or physical
constraints on the network. The aim of this paper is to establish graph
theoretic conditions for this more general property of strong structural
controllability.Comment: 13 page
SPSA-Based Tracking Method for Single-Channel-Receiver Array
A novel tracking method in the phased antenna array with a single-channel receiver for the moving signal source is presented in this paper. And the problems of the direction-of-arrival track and beamforming in the array system are converted to the power maximization of received signal in the free-interference conditions, which is different from the existing algorithms that maximize the signal to interference and noise ratio. The proposed tracking method reaches the global optimum rather than local by injecting the extra noise terms into the gradient estimation. The antenna beam can be steered to coincide with the direction of the moving source fast and accurately by perturbing the output of the phase shifters during motion, due to the high efficiency and easy implementation of the proposed beamforming algorithm based on the simultaneous perturbation stochastic approximation (SPSA). Computer simulations verify that the proposed tracking scheme is robust and effective
Relaxed 2-D Principal Component Analysis by Norm for Face Recognition
A relaxed two dimensional principal component analysis (R2DPCA) approach is
proposed for face recognition. Different to the 2DPCA, 2DPCA- and G2DPCA,
the R2DPCA utilizes the label information (if known) of training samples to
calculate a relaxation vector and presents a weight to each subset of training
data. A new relaxed scatter matrix is defined and the computed projection axes
are able to increase the accuracy of face recognition. The optimal -norms
are selected in a reasonable range. Numerical experiments on practical face
databased indicate that the R2DPCA has high generalization ability and can
achieve a higher recognition rate than state-of-the-art methods.Comment: 19 pages, 11 figure
Deprojection technique for galaxy cluster considering point spread function
We present a new method for the analysis of Abell 1835 observed by
XMM-Newton. The method is a combination of the Direct Demodulation technique
and deprojection. We eliminate the effects of the point spread function (PSF)
with the Direct Demodulation technique. We then use a traditional depro-jection
technique to study the properties of Abell 1835. Compared to that of
deprojection method only, the central electron density derived from this method
increases by 30%, while the temperature profile is similar.Comment: accepted for publication in Sciences in China -- G, the Black Hole
special issu
Piezoelectric control of the magnetic anisotropy via interface strain coupling in a composite multiferroic structure
We investigate theoretically the magnetic dynamics in a
ferroelectric/ferromagnetic heterostructure coupled via strain-mediated
magnetoelectric interaction. We predict an electric field-induced magnetic
switching in the plane perpendicular to the magneto-crystalline easy axis, and
trace this effect back to the piezoelectric control of the magnetoelastic
coupling. We also investigate the magnetic remanence and the electric
coercivity
A Unifying Framework for Strong Structural Controllability
This paper deals with strong structural controllability of linear systems. In
contrast to existing work, the structured systems studied in this paper have a
so-called zero/nonzero/arbitrary structure, which means that some of the
entries are equal to zero, some of the entries are arbitrary but nonzero, and
the remaining entries are arbitrary (zero or nonzero). We formalize this in
terms of pattern matrices whose entries are either fixed zero, arbitrary
nonzero, or arbitrary. We establish necessary and sufficient algebraic
conditions for strong structural controllability in terms of full rank tests of
certain pattern matrices. We also give a necessary and sufficient graph
theoretic condition for the full rank property of a given pattern matrix. This
graph theoretic condition makes use of a new color change rule that is
introduced in this paper. Based on these two results, we then establish a
necessary and sufficient graph theoretic condition for strong structural
controllability. Moreover, we relate our results to those that exists in the
literature, and explain how our results generalize previous work.Comment: 11 pages, 6 Figure
- …