13 research outputs found

    Improving the Performance of the SYND Stream Cipher

    No full text
    International audience. In 2007, Gaborit et al. proposed the stream cipher SYND as an improvement of the pseudo random number generator due to Fischer and Stern. This work shows how to improve considerably the e ciency the SYND cipher without using the so-called regular encoding and without compromising the security of the modi ed SYND stream cipher. Our proposal, called XSYND, uses a generic state transformation which is reducible to the Regular Syndrome Decoding problem (RSD), but has better computational characteristics than the regular encoding. A rst implementation shows that XSYND runs much faster than SYND for a comparative security level (being more than three times faster for a security level of 128 bits, and more than 6 times faster for 400-bit security), though it is still only half as fast as AES in counter mode. Parallel computation may yet improve the speed of our proposal, and we leave it as future research to improve the e ciency of our implementation

    Beyond Modes: Building a Secure Record Protocol from a Cryptographic Sponge Permutation

    Get PDF
    Abstract. BLINKER is a light-weight cryptographic suite and record protocol built from a single permutation. Its design is based on the Sponge construction used by the SHA-3 algorithm KECCAK. We examine the SpongeWrap authen-ticated encryption mode and expand its padding mechanism to offer explicit do-main separation and enhanced security for our specific requirements: shared se-cret half-duplex keying, encryption, and a MAC-and-continue mode. We motivate these enhancements by showing that unlike legacy protocols, the resulting record protocol is secure against a two-channel synchronization attack while also having a significantly smaller implementation footprint. The design facilitates security proofs directly from a single cryptographic primitive (a single security assump-tion) rather than via idealization of multitude of algorithms, paddings and modes of operation. The protocol is also uniquely suitable for an autonomous or semi-autonomous hardware implementation of protocols where the secrets never leave the module, making it attractive for smart card and HSM designs

    Slide Attacks on a Class of Hash Functions

    Get PDF
    Abstract. This paper studies the application of slide attacks to hash functions. Slide attacks have mostly been used for block cipher cryptanalysis. But, as shown in the current paper, they also form a potential threat for hash functions, namely for sponge-function like structures. As it turns out, certain constructions for hash-function-based MACs can be vulnerable to forgery and even to key recovery attacks. In other cases, we can at least distinguish a given hash function from a random oracle. To illustrate our results, we describe attacks against the Grindahl-256 and Grindahl-512 hash functions. To the best of our knowledge, this is the first cryptanalytic result on Grindahl-512. Furthermore, we point out a slide-based distinguisher attack on a slightly modified version of RadioGatún. We finally discuss simple countermeasures as a defense against slide attacks. Key words: slide attacks, hash function, Grindahl, RadioGatún, MAC, sponge function.

    The LED Block Cipher

    Get PDF
    Abstract. We present a new block cipher LED. While dedicated to compact hardware implementation, and offering the smallest silicon footprint among comparable block ciphers, the cipher has been designed to simultaneously tackle three additional goals. First, we explore the role of an ultra-light (in fact non-existent) key schedule. Second, we consider the resistance of ciphers, and LED in particular, to related-key attacks: we are able to derive simple yet interesting AES-like security proofs for LED regarding related- or single-key attacks. And third, while we provide a block cipher that is very compact in hardware, we aim to maintain a reasonable performance profile for software implementation. Key words: lightweight, block cipher, RFID tag, AES.

    Impossible Differential Attack on 30-Round SHACAL-2

    No full text

    S-box, SET, Match: A Toolbox for S-box Analysis

    No full text
    Contains fulltext : 129929.pdf (publisher's version ) (Closed access

    Threshold implementations of all 3×3 and 4×4 S-boxes

    Get PDF
    Side-channel attacks have proven many hardware implementations of cryptographic algorithms to be vulnerable. A recently proposed masking method, based on secret sharing and multi-party computation methods, introduces a set of sufficient requirements for implementations to be provably resistant against first-order DPA with minimal assumptions on the hardware. The original paper doesn’t describe how to construct the Boolean functions that are to be used in the implementation. In this paper, we derive the functions for all invertible 3 ×3, 4 ×4 S-boxes and the 6 ×4 DES S-boxes. Our methods and observations can also be used to accelerate the search for sharings of larger (e.g. 8 ×8) S-boxes. Finally, we investigate the cost of such protection
    corecore