46,534 research outputs found
Tensor coupling effects on spin symmetry in anti-Lambda spectrum of hypernuclei
The effects of -tensor coupling on the spin
symmetry of spectra in -nucleus systems have
been studied with the relativistic mean-field theory. Taking
C+ as an example, it is found that the tensor coupling
enlarges the spin-orbit splittings of by an order of magnitude
although its effects on the wave functions of are negligible.
Similar conclusions has been observed in -nucleus of different
mass regions, including O+, Ca+ and
Pb+. It indicates that the spin symmetry in
anti-lambda-nucleus systems is still good irrespective of the tensor coupling.Comment: 12 pages, 3 figures
Invisible Z decay width bounds on active-sterile neutrino mixing in the (3+1) and (3+2) models
In this work we consider the standard model extended with singlet sterile
neutrinos with mass in the eV range and mixed with the active neutrinos. The
active-sterile neutrino mixing renders new contributions to the invisible Z
decay width which, in the case of light sterile neutrinos, depends on the
active-sterile mixing matrix elements only. We then use the current
experimental value of the invisible Z decay width to obtain bounds on these
mixing matrix elements for both (3+1) and (3+2) models.Comment: 10 pages, 5 figure
Recommended from our members
A review of microgrid development in the United States – A decade of progress on policies, demonstrations, controls, and software tools
Microgrids have become increasingly popular in the United States. Supported by favorable federal and local policies, microgrid projects can provide greater energy stability and resilience within a project site or community. This paper reviews major federal, state, and utility-level policies driving microgrid development in the United States. Representative U.S. demonstration projects are selected and their technical characteristics and non-technical features are introduced. The paper discusses trends in the technology development of microgrid systems as well as microgrid control methods and interactions within the electricity market. Software tools for microgrid design, planning, and performance analysis are illustrated with each tool's core capability. Finally, the paper summarizes the successes and lessons learned during the recent expansion of the U.S. microgrid industry that may serve as a reference for other countries developing their own microgrid industries
Tree FCNC and non-unitarity of CKM matrix
We discuss possible signatures of the tree level FCNC, which results from the
non-unitarity of CKM matrix. We first define the unitaity step-by-step, and
possible test of the non-unitaity through the 4-value-KM parametrization. We,
then, show how the phase angle of the unitary triangle would change in case of
the vector-like down quark model. As another example of tree FCNC, we
investigate the leptophobic model and its application to the recent
mixing measurements.Comment: Talk given at Neutrino Masses and Mixings 2006 (NMM2006), Shizuoka,
Japan (December 2006
Black Hole Production at the Large Hadron Collider
Black hole production at the Large Hadron Collider (LHC) is an interesting
consequence of TeV-scale gravity models. The predicted values, or lower limits,
for the fundamental Planck scale and number of extra dimensions will depend
directly on the accuracy of the black hole production cross-section. We give a
range of lower limits on the fundamental Planck scale that could be obtained at
LHC energies. In addition, we examine the effects of parton electric charge on
black hole production using the trapped-surface approach of general relativity.
Accounting for electric charge of the partons could reduce the black hole
cross-section by one to four orders of magnitude at the LHC.Comment: CTP Symposium on Supersymmetry at LHC: Theoretical and Experimental
Perspectives at the British University in Egypt 11-14 March 200
Hole Spin Coherence in a Ge/Si Heterostructure Nanowire
Relaxation and dephasing of hole spins are measured in a gate-defined Ge/Si
nanowire double quantum dot using a fast pulsed-gate method and dispersive
readout. An inhomogeneous dephasing time
exceeds corresponding measurements in III-V semiconductors by more than an
order of magnitude, as expected for predominately nuclear-spin-free materials.
Dephasing is observed to be exponential in time, indicating the presence of a
broadband noise source, rather than Gaussian, previously seen in systems with
nuclear-spin-dominated dephasing.Comment: 15 pages, 4 figure
Antilocalization of Coulomb Blockade in a Ge-Si Nanowire
The distribution of Coulomb blockade peak heights as a function of magnetic
field is investigated experimentally in a Ge-Si nanowire quantum dot. Strong
spin-orbit coupling in this hole-gas system leads to antilocalization of
Coulomb blockade peaks, consistent with theory. In particular, the peak height
distribution has its maximum away from zero at zero magnetic field, with an
average that decreases with increasing field. Magnetoconductance in the
open-wire regime places a bound on the spin-orbit length ( < 20 nm),
consistent with values extracted in the Coulomb blockade regime ( < 25
nm).Comment: Supplementary Information available at http://bit.ly/19pMpd
- …