22,879 research outputs found

    Preface "Nonlinear processes in oceanic and atmospheric flows"

    Get PDF
    Nonlinear phenomena are essential ingredients in many oceanic and atmospheric processes, and successful understanding of them benefits from multidisciplinary collaboration between oceanographers, meteorologists, physicists and mathematicians. The present Special Issue on ``Nonlinear Processes in Oceanic and Atmospheric Flows'' contains selected contributions from attendants to the workshop which, in the above spirit, was held in Castro Urdiales, Spain, in July 2008. Here we summarize the Special Issue contributions, which include papers on the characterization of ocean transport in the Lagrangian and in the Eulerian frameworks, generation and variability of jets and waves, interactions of fluid flow with plankton dynamics or heavy drops, scaling in meteorological fields, and statistical properties of El Ni\~no Southern Oscillation.Comment: This is the introductory article to a Special Issue on "Nonlinear Processes in Oceanic and Atmospheric Flows'', published in the journal Nonlinear Processes in Geophysics, where the different contributions are summarized. The Special Issue itself is freely available from http://www.nonlin-processes-geophys.net/special_issue103.htm

    From car to bike. Marketing and dialogue as a driver of change

    Get PDF
    The Paris Climate Agreement has sent a key message to the international community regarding the need to increase efforts to move towards a low-carbon economy and help slow climate change, while underpinning global long-term economic growth and sustainable development. COP 21 recognizes the social, economic and environmental value of voluntary mitigation actions and their co-benefits for adaptation, health and sustainable development. In this framework, the PTP Cycle project, running from 2013 to 2016 and funded by the European Commission through the Intelligent Energy Europe program, introduces a non-market approach through voluntary participation in the adoption of sustainable transport modes such as cycling, based on marketing to potential customers through Personalized Travel Plans. The medium-sized city of Burgos (Spain) and the cities of Ljubljana, Riga, Antwerp and London (boroughs of Haringey and Greenwich) developed a new policy instrument (Personalized Travel Plans) in order to increase bike patronage. Beyond potential savings of CO2, the results show that PTP as a form of Active Mobility Consultancy is a suitable instrument to influence modal shift to public transport, walking and cycling, and to address the challenges of climate change, while fostering sustainable transportation by changing mobility behaviour. These results, matching with the state-of-the-art of studies and pilot applications in other countries, allows deriving differentiated results for medium-size and large urban areas

    On SIR epidemic models with generally distributed infectious periods: number of secondary cases and probability of infection

    Get PDF
    Recently, Clancy [SIR epidemic models with general infectious period distribution, Statist. Prob. Lett. 85 (2014) 1–5] has shown how SIR epidemics in which individuals’ infection periods are not necessarily exponentially distributed may be modeled in terms of a piecewise-deterministic Markov process (PDMP). In this paper, we present a more detailed description of the underlying PDMP, from which we analyze the population transmission number and the infection probability of a certain susceptible individual

    Study of star-forming galaxies in SDSS up to redshift 0.4: I. Metallicity evolution

    Full text link
    The chemical composition of the gas in galaxies versus cosmic time provides a very important tool for understanding galaxy evolution. Although there are many studies at high redshift, they are rather scarce at lower redshifts. However, low redshift studies can provide important clues about the evolution of galaxies, furnishing the required link between local and high redshift universe. In this work we focus on the metallicity of the gas of star-forming galaxies at low redshift, looking for signs of chemical evolution. To analyze the metallicity contents star-forming galaxies of similar luminosities and masses at different redshifts. With this purpose, we present a study of the metallicity of relatively massive (log(M_star/M_sun)>10.5) star forming galaxies from SDSS--DR5 (Sloan Digital Sky Survey--Data Release 5), using different redshift intervals from 0.04 to 0.4. We used data processed with the STARLIGHT spectral synthesis code, correcting the fluxes for dust extinction, estimating metallicities using the R_23 method, and segregating the samples with respect to the value of the [NII]6583/[OII]3727 line ratio in order to break the R_23 degeneracy selecting the upper branch. We analyze the luminosity and mass-metallicity relations, and the effect of the Sloan fiber diameter looking for possible biases. By dividing our redshift samples in intervals of similar magnitude and comparing them, significant signs of metallicity evolution are found. Metallicity correlates inversely with redshift: from redshift 0 to 0.4 a decrement of ~0.1 dex in 12+log(O/H) is found.Comment: 11 pages, 9 figures, Accepted for publication in A&

    The circumstellar environment of HD50138 revealed by VLTI/AMBER at high angular resolution

    Full text link
    HD50138 is a Herbig B[e] star with a circumstellar disc detected at IR and mm wavelength. Its brightness makes it a good candidate for NIR interferometry observations. We aim to resolve, spatially and spectrally, the continuum and hydrogen emission lines in the 2.12-2.47 micron region, to shed light on the immediate circumstellar environment of the star. VLTI/AMBER K-band observations provide spectra, visibilities, differential phases, and closure phases along three long baselines for the continuum, and HI emission in Brγ\gamma and five high-n Pfund lines. By computing the pure-line visibilities, we derive the angular size of the different line-emitting regions. A simple LTE model was created to constrain the physical conditions of HI emitting region. The continuum region cannot be reproduced by a geometrical 2D elongated Gaussian fitting model. We estimate the size of the region to be 1 au. We find the Brγ\gamma and Pfund lines come from a more compact region of size 0.4 au. The Brγ\gamma line exhibits an S-shaped differential phase, indicative of rotation. The continuum and Brγ\gamma line closure phase show offsets of ∼\sim-25±\pm5 o^o and 20±\pm10o^o, respectively. This is evidence of an asymmetry in their origin, but with opposing directions. We find that we cannot converge on constraints for the HI physical parameters without a more detailed model. Our analysis reveals that HD50138 hosts a complex circumstellar environment. Its continuum emission cannot be reproduced by a simple disc brightness distribution. Similarly, several components must be evoked to reproduce the interferometric observables within the Brγ\gamma, line. Combining the spectroscopic and interferometric data of the Brγ\gamma and Pfund lines favours an origin in a wind region with a large opening angle. Finally, our results point to an evolved source.Comment: accepted for publication in A&

    Outflows of hot molecular gas in ultra-luminous infra-red galaxies mapped with VLT-SINFONI

    Full text link
    We present the detection and morphological characterization of hot molecular gas outflows in nearby ultra-luminous infrared galaxies, using the near-IR integral-field spectrograph SINFONI on the VLT. We detect outflows observed in the 2.12 micron H2_{2} 1-0 S(1) line for three out of four ULIRGs analyzed; IRAS 12112+0305, 14348-1447, and 22491-1808. The outflows are mapped on scales of 0.7-1.6 kpc, show typical outflow velocities of 300-500 km/s, and appear to originate from the nuclear region. The outflows comprise hot molecular gas masses of ~6-8x103^3 M(sun). Assuming a hot-to-cold molecular gas mass ratio of 6x10−5^{-5}, as found in nearby luminous IR galaxies, the total (hot+cold) molecular gas mass in these outflows is expected to be ~1x108^{8} M(sun). This translates into molecular mass outflow rates of ~30-85 M(sun)/yr, which is a factor of a few lower than the star formation rate in these ULIRGs. In addition, most of the outflowing molecular gas does not reach the escape velocity of these merger systems, which implies that the bulk of the outflowing molecular gas is re-distributed within the system and thus remains available for future star formation. The fastest H2_{2} outflow is seen in the Compton-thick AGN of IRAS 14348-1447, reaching a maximum outflow velocity of ~900 km/s. Another ULIRG, IRAS 17208-0014, shows asymmetric H2_{2} line profiles different from the outflows seen in the other three ULIRGs. We discuss several alternative explanations for its line asymmetries, including a very gentle galactic wind, internal gas dynamics, low-velocity gas outside the disk, or two superposed gas disks. We do not detect the hot molecular counterpart to the outflow previously detected in CO(2-1) in IRAS 17208-0014, but we note that our SINFONI data are not sensitive enough to detect this outflow if it has a small hot-to-cold molecular gas mass ratio of < 9x10−6^{-6}.Comment: Accepted for publication in A&A (11 pages, 10 figures
    • …
    corecore