126 research outputs found

    The 12-item Oxford Knee Score: cross-cultural adaptation into German and assessment of its psychometric properties in patients with osteoarthritis of the knee

    Get PDF
    SummaryObjectiveTo cross-culturally adapt and validate the Oxford Knee Score (OKS) for use in German-speaking patients with osteoarthritis of the knee.MethodsAfter the cross-cultural adaptation (OKS-D), the following metric properties of the questionnaire were assessed in 100 consecutive patients (mean age 66.5 years, 61 women) undergoing total knee replacement: feasibility (percentage of fully completed questionnaires), reliability (Intraclass Correlation Coefficients [ICC] and Bland and Altman's limits of agreement), and construct validity (correlation with the Western Ontario and McMaster Universities Index [WOMAC], Knee Society Score [KSS], Activities of Daily Living Scale [ADLS], and Short Form 12 [SF-12]), floor and ceiling effects, and internal consistency (Cronbach's Alpha, CA).ResultsWe received 91.9% fully completed questionnaires. Reliability of the OKS-D was excellent (ICC 0.91). Bland and Altman's limits of agreement revealed no significant bias (−0.2) and a random error of 6.2. Correlation coefficients with the other questionnaires ranged from −0.22 (SF-12 Mental Component Scale [MCS]) to −0.77 (ADLS). We observed no floor or ceiling effects. The CA was 0.83.ConclusionsThe German version of the OKS is a reliable and valid measure for the self-assessment of pain and function in German-speaking patients with osteoarthritis of the knee

    Altın âşıkları

    Get PDF
    Ahmet Mithat'ın Tarik'te tefrika edilen Altın Âşıkları adlı roman

    Calcitonin substitution in calcitonin deficiency reduces particle-induced osteolysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Periprosthetic osteolysis is a major cause of aseptic loosening in joint arthroplasty. This study investigates the impact of CT (calcitonin) deficiency and CT substitution under in-vivo circumstances on particle-induced osteolysis in <it>Calca </it>-/- mice.</p> <p>Methods</p> <p>We used the murine calvarial osteolysis model based on ultra-high molecular weight polyethylene (UHMWPE) particles in 10 C57BL/6J wild-type (WT) mice and twenty <it>Calca </it>-/- mice. The mice were divided into six groups: WT without UHMWPE particles (Group 1), WT with UHMWPE particles (Group 2), <it>Calca </it>-/- mice without UHMWPE particles (Group 3), <it>Calca </it>-/- mice with UHMWPE particles (Group 4), <it>Calca </it>-/- mice without UHMWPE particles and calcitonin substitution (Group 5), and <it>Calca </it>-/- mice with UHMWPE particle implantation and calcitonin substitution (Group 6). Analytes were extracted from serum and urine. Bone resorption was measured by bone histomorphometry. The number of osteoclasts was determined by counting the tartrate-resistant acid phosphatase (TRACP) + cells.</p> <p>Results</p> <p>Bone resorption was significantly increased in <it>Calca </it>-/- mice compared with their corresponding WT. The eroded surface in <it>Calca </it>-/- mice with particle implantation was reduced by 20.6% after CT substitution. Osteoclast numbers were significantly increased in <it>Calca </it>-/- mice after particle implantation. Serum OPG (osteoprotegerin) increased significantly after CT substitution.</p> <p>Conclusions</p> <p>As anticipated, <it>Calca </it>-/- mice show extensive osteolysis compared with wild-type mice, and CT substitution reduces particle-induced osteolysis.</p

    Self-assembled monolayers of alendronate on Ti6Al4V alloy surfaces enhance osteogenesis in mesenchymal stem cells

    Get PDF
    Phosphonates have emerged as an alternative for functionalization of titanium surfaces by the formation of homogeneous self-assembled monolayers (SAMs) via Ti-O-P linkages. This study presents results from an investigation of the modification of Ti6Al4V alloy by chemisorption of osseoinductive alendronate using a simple, effective and clean methodology. The modified surfaces showed a tailored topography and surface chemistry as determined by SEM microscopy and RAMAN spectroscopy. X-ray photoelectron spectroscopy revealed that an effective mode of bonding is created between the metal oxide surface and the phosphate residue of alendronate, leading to formation of homogenous drug distribution along the surface. In-vitro studies showed that alendronate SAMs induce differentiation of hMSC to a bone cell phenotype and promote bone formation on modified surfaces. Here we show that this novel method for the preparation of functional coatings on titanium-based medical devices provides osseoinductive bioactive molecules to promote enhanced integration at the site of implantation

    Dislocation of total hip replacement in patients with fractures of the femoral neck: A prospective cohort study of 713 consecutive hips

    Get PDF
    Background Total hip replacement is increasingly used in active, relatively healthy elderly patients with fractures of the femoral neck. Dislocation of the prosthesis is a severe complication, and there is still controversy regarding the optimal surgical approach and its influence on stability. We analyzed factors influencing the stability of the total hip replacement, paying special attention to the surgical approach

    The impact of bisphosphonates on the osteoblast proliferation and Collagen gene expression in vitro

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bisphosphonates are widely used in the clinical treatment of bone diseases with increased bone resorption. In terms of side effects, they are known to be associated with osteonecrosis of the jaw (BONJ).</p> <p>The objective of this study was to evaluate the effect of bisphosphonates on osteoblast proliferation by cell count and gene expression analysis of cyclin D1 <it>in vitro</it>. Furthermore, the gene expression of the extracellular matrix protein collagen type I was evaluated. Nitrogen-containing and non-nitrogen-containing bisphosphonates have been compared on gene expression levels.</p> <p>Methods</p> <p>Human osteoblast obtained from hip bone were stimulated with zoledronate, ibandronate and clodronate at concentrations of 5 × 10<sup>-5</sup>M over the experimental periods of 1, 2, 5, 10 and 14 days. At each point in time, the cells were dissolved, the mRNA extracted, and the gene expression level of cyclin D1 and collagen type I were quantified by Real-Time RT-PCR. The gene expression was compared to an unstimulated osteoblast cell culture for control.</p> <p>Results</p> <p>The proliferation appeared to have been influenced only to a small degree by bisphosphonates. Zolendronate led to a lower cyclin D1 gene expression after 10 days. The collagen gene expression was enhanced by nitrogen containing bisphosphonates, decreased however after day 10. The non-nitrogen-containing bisphosphonate clodronate, however, did not significantly influence cyclin D1 and collagen gene expression.</p> <p>Conclusions</p> <p>The above data suggest a limited influence of bisphosphonates on osteoblast proliferation, except for zoledronate. The extracellular matrix production seems to be initially advanced and inhibited after 10 days. Interestingly, clodronate has little influence on osteoblast proliferation and extracellular matrix production in terms of cyclin D1 and collagen gene expression.</p

    Regulation of Epithelial Cell Morphology and Functions Approaching To More In Vivo-Like by Modifying Polyethylene Glycol on Polysulfone Membranes

    Get PDF
    Cytocompatibility is critically important in design of biomaterials for application in tissue engineering. However, the currently well-accepted “cytocompatible" biomaterials are those which promote cells to sustain good attachment/spreading. The cells on such materials usually lack the self-assembled cell morphology and high cell functions as in vivo. In our view, biomaterials that can promote the ability of cells to self-assemble and demonstrate cell-specific functions would be cytocompatible. This paper examined the interaction of polyethylene glycol (PEG) modified polysulfone (PSf) membranes with four epithelial cell types (primary liver cells, a liver tumor cell line, and two renal tubular cell lines). Our results show that PSf membranes modified with proper PEG promoted the aggregation of both liver and renal cells, but the liver cells more easily formed aggregates than the renal tubular cells. The culture on PEG-modified PSf membranes also enhanced cell-specific functions. In particular, the cells cultured on F127 membranes with the proper PEG content mimicked the in vivo ultrastructure of liver cells or renal tubules cells and displayed the highest cell functions. Gene expression data for adhesion proteins suggest that the PEG modification impaired cell-membrane interactions and increased cell-cell interactions, thus facilitating cell self-assembly. In conclusion, PEG-modified membrane could be a cytocompatible material which regulates the morphology and functions of epithelial cells in mimicking cell performance in vivo

    The Src inhibitor dasatinib accelerates the differentiation of human bone marrow-derived mesenchymal stromal cells into osteoblasts

    Get PDF
    The proto-oncogene Src is an important non-receptor protein tyrosine kinase involved in signaling pathways that control cell adhesion, growth, migration and differentiation. It negatively regulates osteoblast activity, and, as such, its inhibition is a potential means to prevent bone loss. Dasatinib is a new dual Src/Bcr-Abl tyrosine kinase inhibitor initially developed for the treatment of chronic myeloid leukemia. It has also shown promising results in preclinical studies in various solid tumors. However, its effects on the differentiation of human osteoblasts have never been examined.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Periprosthetic osteolysis after total hip replacement: molecular pathology and clinical management

    Get PDF
    Periprosthetic osteolysis is a serious complication of total hip replacement (THR) in the medium to long term. Although often asymptomatic, osteolysis can lead to prosthesis loosening and periprosthetic fracture. These complications cause significant morbidity and require complex revision surgery. Here, we review advances in our understanding of the cell and tissue response to particles produced by wear of the articular and non-articular surfaces of prostheses. We discuss the molecular and cellular regulators of osteoclast formation and bone resorptive activity, a better understanding of which may lead to pharmacological treatments for periprosthetic osteolysis. We describe the development of imaging techniques for the detection and measurement of osteolysis around THR prostheses, which enable improved clinical management of patients, provide a means of evaluating outcomes of non-surgical treatments for periprosthetic osteolysis, and assist in pre-operative planning for revision surgery. Finally, there have been advances in the materials used for bearing surfaces to minimise wear, and we review the literature regarding the performance of these new materials to date.Donald W. Howie, Susan D. Neale, David R. Haynes, Oksana T. Holubowycz, Margaret A. McGee, Lucian B. Solomon, Stuart A. Callary, Gerald J. Atkins, David M. Findla
    corecore