12,428 research outputs found
Fragmentation paths in dynamical models
We undertake a quantitative comparison of multi-fragmentation reactions, as
modeled by two different approaches: the Antisymmetrized Molecular Dynamics
(AMD) and the momentum-dependent stochastic mean-field (SMF) model. Fragment
observables and pre-equilibrium (nucleon and light cluster) emission are
analyzed, in connection to the underlying compression-expansion dynamics in
each model. Considering reactions between neutron-rich systems, observables
related to the isotopic properties of emitted particles and fragments are also
discussed, as a function of the parametrization employed for the isovector part
of the nuclear interaction. We find that the reaction path, particularly the
mechanism of fragmentation, is different in the two models and reflects on some
properties of the reaction products, including their isospin content. This
should be taken into account in the study of the density dependence of the
symmetry energy from such collisions.Comment: 11 pages, 13 figures, submitted to Phys. Rev.
Regulatory T cells in melanoma revisited by a computational clustering of FOXP3+ T cell subpopulations
CD4+ T cells that express the transcription factor FOXP3 (FOXP3+ T cells) are commonly regarded as immunosuppressive regulatory T cells (Treg). FOXP3+ T cells are reported to be increased in tumour-bearing patients or animals, and considered to suppress anti-tumour immunity, but the evidence is often contradictory. In addition, accumulating evidence indicates that FOXP3 is induced by antigenic stimulation, and that some non-Treg FOXP3+ T cells, especially memory-phenotype FOXP3low cells, produce proinflammatory cytokines. Accordingly, the subclassification of FOXP3+ T cells is fundamental for revealing the significance of FOXP3+ T cells in tumour immunity, but the arbitrariness and complexity of manual gating have complicated the issue. Here we report a computational method to automatically identify and classify FOXP3+ T cells into subsets using clustering algorithms. By analysing flow cytometric data of melanoma patients, the proposed method showed that the FOXP3+ subpopulation that had relatively high FOXP3, CD45RO, and CD25 expressions was increased in melanoma patients, whereas manual gating did not produce significant results on the FOXP3+ subpopulations. Interestingly, the computationally-identified FOXP3+ subpopulation included not only classical FOXP3high Treg but also memory-phenotype FOXP3low cells by manual gating. Furthermore, the proposed method successfully analysed an independent dataset, showing that the same FOXP3+ subpopulation was increased in melanoma patients, validating the method. Collectively, the proposed method successfully captured an important feature of melanoma without relying on the existing criteria of FOXP3+ T cells, revealing a hidden association between the T cell profile and melanoma, and providing new insights into FOXP3+ T cells and Treg
Comparison of dynamical multifragmentation models
Multifragmentation scenarios, as predicted by antisymmetrized molecular
dynamics (AMD) or momentum-dependent stochastic mean-field (BGBD) calculations
are compared. While in the BGBD case fragment emission is clearly linked to the
spinodal decomposition mechanism, i.e. to mean-field instabilities, in AMD
many-body correlations have a stronger impact on the fragmentation dynamics and
clusters start to appear at earlier times. As a consequence, fragments are
formed on shorter time scales in AMD, on about equal footing of light particle
pre-equilibrium emission. Conversely, in BGBD pre-equilibrium and fragment
emissions happen on different time scales and are related to different
mechanisms
Geometry and Conductance of Al Wires Suspended between Semi-Infinite Crystalline Electrodes
We present a first-principles study of a coherent relationship between the
optimized geometry and conductance of a three-aluminum-atom wire during its
elongation process. Our simulation employs the most definite model including
semi-infinite crystalline electrodes using the overbridging boundary-matching
method [Phys. Rev. B {\bf 67}, 195315 (2003)] extended to incorporate nonlocal
pseudopotentials. The results that the conductance of the wire is 1
G and the conductance trace as a function of electrode spacing shows a
convex downward curve before breaking are in agreement with experimental data.Comment: 5 pages and 3 figure
Dynamics of an Acoustic Polaron in One-Dimensional Electron-Lattice System
The dynamical behavior of an acoustic polaron in typical non-degenerate
conjugated polymer, polydiacetylene, is numerically studied by using
Su-Schrieffer-Heeger's model for the one dimensional electron-lattice system.
It is confirmed that the velocity of a polaron accelerated by a constant
electric field shows a saturation to a velocity close to the sound velocity of
the system, and that the width of a moving polaron decreases as a monotonic
function of the velocity tending to zero at the saturation velocity. The
effective mass of a polaron is estimated to be about one hundred times as heavy
as the bare electron mass. Furthermore the linear mode analysis in the presence
of a polaron is carried out, leading to the conclusion that there is only one
localized mode, i.e. the translational mode. This is confirmed also from the
phase shift of extended modes. There is no localized mode corresponding to the
amplitude mode in the case of the soliton in polyacetylene. Nevertheless the
width of a moving polaron shows small oscillations in time. This is found to be
related to the lowest odd symmetry extended mode and to be due to the finite
size effect.Comment: 12 pages, latex, 9 figures (postscript figures abailble on request to
[email protected]) to be published in J. Phys. Soc. Jpn. vol.65
(1996) No.
Compatibility of localized wave packets and unrestricted single particle dynamics for cluster formation in nuclear collisions
Antisymmetrized molecular dynamics with quantum branching is generalized so
as to allow finite time duration of the unrestricted coherent mean field
propagation which is followed by the decoherence into wave packets. In this new
model, the wave packet shrinking by the mean field propagation is respected as
well as the diffusion, so that it predicts a one-body dynamics similar to that
in mean field models. The shrinking effect is expected to change the diffusion
property of nucleons in nuclear matter and the global one-body dynamics. The
central \xenon+\tin collisions at 50 MeV/nucleon are calculated by the models
with and without shrinking, and it is shown that the inclusion of the wave
packet shrinking has a large effect on the multifragmentation in a big
expanding system with a moderate expansion velocity.Comment: 16 pages, 7 figure
First-Principles Study on Leakage Current through Si/SiO Interface
The relationship between the presence of defects at the stacking structure of
the Si/SiO interface and leakage current is theoretically studied by
first-principles calculation. I found that the leakage current through the
interface with dangling bonds is 530 times larger than that without any
defects, which is expected to lead to dielectric breakdown. The direction of
the dangling bonds is closely related to the performance of the oxide as an
insulator. In addition, it is proved that the termination of the dangling bonds
by hydrogen atoms is effective for reducing the leakage current.Comment: 11 pages. to be published in Phys. Rev.
Spin Polarization and Magneto-Coulomb Oscillations in Ferromagnetic Single Electron Devices
The magneto-Coulomb oscillation, the single electron repopulation induced by
external magnetic field, observed in a ferromagnetic single electron transistor
is further examined in various ferromagnetic single electron devices. In case
of double- and triple-junction devices made of Ni and Co electrodes, the single
electron repopulation always occurs from Ni to Co electrodes with increasing a
magnetic field, irrespective of the configurations of the electrodes. The
period of the magneto-Coulomb oscillation is proportional to the single
electron charging energy. All these features are consistently explained by the
mechanism that the Zeeman effect induces changes of the Fermi energy of the
ferromagnetic metal having a non-zero spin polarizations. Experimentally
determined spin polarizations are negative for both Ni and Co and the magnitude
is larger for Ni than Co as expected from band calculations.Comment: 4 pages, 3 figures, uses jpsj.sty, submitted to J. Phys. Soc. Jp
Semi-Phenomenological Analysis of Dynamics of Nonlinear Excitations in One-Dimensional Electron-Phonon System
The structure of moving nonlinear excitations in one-dimensional
electron-phonon systems is studied semi-phenomenologically by using an
effective action in which the width of the nonlinear excitation is treated as a
dynamical variable. The effective action can be derived from Su, Schrieffer and
Heeger's model or its continuum version proposed by Takayama, Lin-Liu and Maki
with an assumption that the nonlinear excitation moves uniformly without any
deformation except the change of its width. The form of the action is
essentially the same as that discussed by Bishop and coworkers in studying the
dynamics of the soliton in polyacetylene, though some details are different.
For the moving excitation with a velocity , the width is determined by
minimizing the effective action. A requirement that there must be a minimum in
the action as a function of its width provides a maximum velocity. The velocity
dependence of the width and energy can be determined. The motions of a soliton
in p olyacetylene and an acoustic polaron in polydiacetylene are studied within
this formulation. The obtained results are in good agreement with those of
numerical simulations.Comment: 19 pages, LaTeX, 7 Postscript figures, to be published in J. Phys.
Soc. Jpn. vol.65 (1996) No.
Nonequilibrium spin distribution in single-electron transistor
Single-electron transistor with ferromagnetic outer electrodes and
nonmagnetic island is studied theoretically. Nonequilibrium electron spin
distribution in the island is caused by tunneling current. The dependencies of
the magnetoresistance ratio on the bias and gate voltages show the
dips which are directly related to the induced separation of Fermi levels for
electrons with different spins. Inside a dip can become negative.Comment: 11 pages, 2 eps figure
- …