14,540 research outputs found

    Effects of antibodies against dynein and tubulin on the stiffness of flagellar axonemes

    Get PDF
    Antidynein antibodies, previously shown to inhibit flagellar oscillation and active sliding of axonemal microtubules, increase the bending resistance of axonemes measured under relaxing conditions, but not the bending resistance of axonemes measured under rigor conditions. These observations suggest that antidynein antibodies can stabilize rigor cross-bridges between outer-doublet microtubules, by interfering with ATP-induced cross-bridge detachment. Stabilization of a small number of cross-bridge appears to be sufficient to cause substantial inhibition of the frequency of flagellar oscillation. Antitubulin antibodies, previously shown to inhibit flagellar oscillation without inhibiting active sliding of axonemal microtubules, do not increase the static bending resistance of axonemes. However, we observed a viscoelastic effect, corresponding to a large increase in the immediate bending resistance. This immediate bending resistance increase may be sufficient to explain inhibition of flagellar oscillation; but several alternative explanations cannot yet be excluded

    Quantum dynamics of non-relativistic particles and isometric embeddings

    Get PDF
    It is considered, in the framework of constrained systems, the quantum dynamics of non-relativistic particles moving on a d-dimensional Riemannian manifold M isometrically embedded in Rd+nR^{d+n}. This generalizes recent investigations where M has been assumed to be a hypersurface of Rd+1R^{d+1}. We show, contrary to recent claims, that constrained systems theory does not contribute to the elimination of the ambiguities present in the canonical and path integral formulations of the problem. These discrepancies with recent works are discussed.Comment: Revtex, 14 page

    Stationary Rotating Strings as Relativistic Particle Mechanics

    Get PDF
    Stationary rotating strings can be viewed as geodesic motions in appropriate metrics on a two-dimensional space. We obtain all solutions describing stationary rotating strings in flat spacetime as an application. These rotating strings have infinite length with various wiggly shapes. Averaged value of the string energy, the angular momentum and the linear momentum along the string are discussed.Comment: 20pages, 7 figure

    Statistical characterization of the forces on spheres in an upflow of air

    Get PDF
    The dynamics of a sphere fluidized in a nearly-levitating upflow of air were previously found to be identical to those of a Brownian particle in a two-dimensional harmonic trap, consistent with a Langevin equation [Ojha {\it et al.}, Nature {\bf 427}, 521 (2004)]. The random forcing, the drag, and the trapping potential represent different aspects of the interaction of the sphere with the air flow. In this paper we vary the experimental conditions for a single sphere, and report on how the force terms in the Langevin equation scale with air flow speed, sphere radius, sphere density, and system size. We also report on the effective interaction potential between two spheres in an upflow of air.Comment: 7 pages, experimen
    • …
    corecore