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Abstract

Stationary rotating strings can be viewed as geodesic motions in appropriate metrics on a two-

dimensional space. We obtain all solutions describing stationary rotating strings in flat spacetime

as an application. These rotating strings have infinite length with various wiggly shapes. Averaged

value of the string energy, the angular momentum and the linear momentum along the string are

discussed.
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I. INTRODUCTION

Cosmic strings are topological defects produced by U(1) symmetry breaking in the unified

field theories, which is believed to occur in the early stage of the universe[1]. (See also [2]

for a review.) Verification of the existence of cosmic strings is a strong evidence of the

occurrence of vacuum phase transition in the universe. For detection of the cosmic strings,

clarification of the string motion is an important task.

For the cosmic strings in the framework of gauge theories, the reconnection probability

is essentially one[3]. When strings cross, they reconnect and reduce their total length. The

closed loops are produced by self-intersections of long strings, and loops decay through

gravitational radiation. It is known that the strings evolve in a scale-invariant manner

[4, 5, 6]. There are renewed interest of cosmic strings, recently, in relation to the spacetime

geometry of the compact extra dimensions of fundamental string theories including branes[7,

8, 9]. A detailed investigation[10] suggests that the reconnection probability of this type of

strings is considerably suppressed. In this case, the strings in the universe are practically

stable. Then, it is a natural question that what is the final state of cosmic strings?

It is well known that the final state of black holes is the Kerr spacetime, which is a

stationary state. We guess analogously that the final state of cosmic strings would be a

stationary string. The stationary string is defined as the world surface which is tangent

to a time-like Killing vector field if one neglects the thickness and the gravitational ef-

fects of a string. There are many works on stationary strings in various stationary target

spacetimes[11, 12, 13, 14].

We consider infinitely long and stationary rotating strings in the Minkowski spacetime

whose dynamics is governed by the Nambu-Goto action in this paper. Though this subject

is already studied by Burden and Tassie[11] in a different motivation, and also investigated

in the literatures[12, 13, 14], it is worth clarifying physical properties of stationary rotating

strings completely because the stationary rotating strings have a rich variety of configuration

even in Minkowski spacetime.

A stationary string is an example of cohomogeneity-one string. The world surface of

cohomogeneity-one string is tangent to a Killing vector field of a target space, equivalently,

the world surface is foliated by the orbits of one-parameter group of isometry. All possi-

ble cohomogeneity-one strings in Minkowski spacetime are classified into seven families[15].
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Stationary rotating strings in Minkowski spacetime belong to one family of them. Solving

equations of motion for cohomogeneity-one string is reduced to finding geodesic curves in a

three-dimensional space with the metric which is determined by the Killing vector[13, 15].

We would find an analogy between the system of cohomogeneity-one string and the system

of Bianchi cosmologies. In the Bianchi cosmologies, universe is foliated by homogeneous time

slices, i.e., spacetime is cohomogeneity-one. The dynamics of Bianchi cosmologies is regarded

as the one of a relativistic particle. Similarly, the dynamics of each family of cohomogeneity-

one string can be identified by the one of a particle moving in a curved space specified by

the geometrical symmetry of the string[15]. We perform this procedure of identification for

stationary rotating strings as the first step, in this paper. As a result, we show that the

system of stationary rotating strings can be formulated as the dynamical system of particles

moving along geodesics in two-dimensional curved spaces. It is important to clarify the

geometrical structure of the two-dimensional space to understand the stationary rotating

strings. This viewpoint is another motivation of this paper.

This paper is organized as follows. In Section 2 we formulate the system of stationary

rotating strings in Minkowski spacetime as dynamical systems of particles. In Section 3

general solutions for the system are presented. In Section 4 we examine physical properties

of the stationary rotating strings. Finally, Section 5 is devoted to discussions.

II. STATIONARY ROTATING STRINGS IN MINKOWSKI SPACETIME

A. Equations of Motion for Cohomogeneity-One Strings

A string is a two-dimensional world surface Σ in a target spacetime M. The embedding

of Σ in M is described by

xµ = xµ(ζa),

where xµ are coordinates of M and ζa (ζ0 = τ, ζ1 = σ) are two parameters on Σ. We assume

that the dynamics of string is governed by the Nambu-Goto action

S = −µ

∫

Σ

d2ζ
√−γ, (2.1)

where µ is the string tension and γ is the determinant of the induced metric on Σ given by

γab = gµν∂ax
µ∂bx

ν , (2.2)
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where gµν is the metric of M.

Let us consider that the metric gµν of M possesses isometries generated by Killing vector

fields. If Σ is tangent to one of the Killing vector fields of M, say ξ, we call the world surface

Σ a cohomogeneity-one string associated with the Killing vector ξ. The stationary string is

one of the example of the cohomogeneity-one string, where the Killing vector is timelike.

The group action of isometry generated by ξ on M defines the orbit of ξ. The metric on

the orbit space is naturally introduced by the projection tensor with respect to ξ,

hµν := gµν − ξµξν/f, (2.3)

where f := ξµξµ. The action for the cohomogeneity-one string associated with a Killing

vector ξ is reduced to the action for a curve C in the form[13, 15]

S =

∫

C

√

−fhµνdxµdxν . (2.4)

The metric hµν has Euclidean signature in the case of timelike Killing vector, f < 0, and

Lorentzian signature in the case of spacelike Killing vector, f > 0.

The action (2.4) gives the length of C with respect to the metric −fhµν on the orbit space

of ξ. Therefore, the problem for finding solutions of cohomogeneity-one string associated

with ξ reduces to the problem for solving three-dimensional geodesic equations with respect

to the metric −fhµν .

B. Equations of Motion for Stationary Rotating Strings

We consider stationary rotating strings in Minkowski spacetime with the metric in the

cylindrical coordinate for an inertial reference frame,

ds2 = −dt̄2 + dρ̄2 + ρ̄2dϕ̄2 + dz̄2. (2.5)

The world surface is tangent to the Killing vector field

ξ = ∂t̄ + Ω∂ϕ̄, (2.6)

where Ω is a constant denoting the angular velocity. We introduce a new coordinate

xµ = (t, ρ, ϕ, z) = (t̄, ρ̄, ϕ̄ − Ωt̄, z̄) (2.7)

4



such that

ξ = ∂t. (2.8)

The coordinate system xµ gives the rigidly rotating reference frame with the angular velocity

Ω. In this coordinate system, we rewrite the metric of Minkowski spacetime as

ds2 = gµνdxµdxν

= −(1 − Ω2ρ2)

(

dt − Ωρ2

1 − Ω2ρ2
dϕ

)2

+ dρ2 +
ρ2

1 − Ω2ρ2
dϕ2 + dz2. (2.9)

The norm of the Killing vector is given by f = ξµξ
µ = −(1−Ω2ρ2), and the metric of orbit

space defined by (2.3) is

ds2
(3) = hijdxidxj = dρ2 +

ρ2

1 − Ω2ρ2
dϕ2 + dz2, (i, j = 1, 2, 3). (2.10)

The singular point ρ = 1/|Ω| of the three-dimensional metric (2.10) is the light cylinder

where the rotation velocity becomes the light velocity. For a stationary rotating string the

Killing vector ξ is timelike on Σ, then the string should stay in the region ρ < 1/|Ω|. The

Nambu-Goto equation for the stationary rotating string whose world surface is tangent to ξ

in Minkowski spacetime is reduced to the three-dimensional geodesic equation in the metric

ds̃2
(3) = h̃ijdxidxj = −fhijdxidxj = (1 − Ω2ρ2)dρ2 + ρ2dϕ2 + (1 − Ω2ρ2)dz2. (2.11)

The world surface of the string is spanned by the geodesic curve, say xk(σ), and the Killing

vector ξ. Then, by using a parameter choice

τ = t, (2.12)

we can give the embedding of Σ, xµ(τ, σ), in the form

xµ(τ, σ) =







t(τ) = τ

xk(σ) = (ρ(σ), ϕ(σ), z(σ)).
(2.13)

C. Reduced system

We should obtain the geodesics in the three-dimensional orbit space. The action (2.4)

for the geodesics with respect to the metric (2.11) is equivalent to the action

S =
1

2

∫
[

1

N
h̃ijx

′ix′j + N

]

dσ (2.14)

=
1

2

∫
[

1

N

{

(1 − Ω2ρ2)ρ′2 + ρ2ϕ′2 + (1 − Ω2ρ2)z′2
}

+ N

]

dσ, (2.15)
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where the prime denotes the derivative with respect to σ, and N is an arbitrary function of

σ which is related to the reparametrization invariance of the curve.

In the action (2.15), z and ϕ are cyclic (ignorable) coordinates. Here, using the fact that

the momentum conjugate to z is conserved we pay attention to curves which is projected

on ρ − ϕ plane. We can interpret the projected curves in two ways; One is geodesics in

a two-dimensional curved space, and the other is spatial orbits of a particle moving in a

potential in two-dimensional flat space. We proceed along the first viewpoint, and also give

brief discussion with the second view in Appendix A.

Action (2.14) is written in the Hamilton form

S =

∫

[

pix
′i − NH

]

dσ, (2.16)

where the canonical conjugate momentum pi with respect to xi is

pi =
1

N
h̃ijx

′j . (2.17)

Variation of (2.16) by N leads that the Hamiltonian NH is vanishing, i.e.,

H =
1

2

(

h̃ijpipj − 1
)

= 0. (2.18)

Since the momentum pz, which is conjugate to the cyclic coordinate z, takes a constant

value, say q. The action (2.16) reduces to

S = S0 + qz −
∫

NHdσ, (2.19)

where

S0 =

∫

pAx′Adσ, (xA = ρ, ϕ). (2.20)

When we concentrate on the curves that satisfy pz = q and H = 0, according to Maupertuis’

principle, the projected curve is the curve that extremizes the abbreviated action, S0.

With the help of (2.17) the Hamiltonian constraint is written in the form

0 = H =
1

2

(

h̃ABpApB + h̃zzq2 − 1
)

=
1

2

(

1

N2
h̃ABx′Ax′B + h̃zzq2 − 1

)

. (2.21)

Then, we have

h̃ABdxAdxB + (h̃zzq2 − 1)N2dσ2 = 0. (2.22)
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Inserting (2.17) and (2.22) into (2.20), we obtain Jacobi’s form of the abbreviated action,

S0 =

∫

1

N
h̃ABx′Ax′Bdσ

=

∫
√

(1 − h̃zzq2)h̃ABdxAdxB. (2.23)

Therefore, the action (2.15) reduces to the geodesic action

S0 =

∫

√

hred
ABdxAdxB, (2.24)

where the metric of reduced two-dimensional space is given as

hred
AB = (1 − h̃zzq2)h̃AB. (2.25)

By variation of S by q, we have

z = −∂S0

∂q
. (2.26)

The geodesic curves extremizing (2.24) together with (2.26) determine the full three-

dimensional geodesics in the orbit space.

For the stationary rotating strings, the metric of two-dimensional curved space on which

we seek geodesics is expressed explicitly in the form

ds2
red = hred

ABdxAdxB = (1 − h̃zzq2)h̃ABdxAdxB

= (1 − q2 − Ω2ρ2)

(

dρ2 +
ρ2

1 − Ω2ρ2
dϕ2

)

. (2.27)

The action for geodesics (2.24) is equivalent to

S0 =
1

2

∫
[

1

N(2)

(1 − q2 − Ω2ρ2)

(

ρ′2 +
ρ2

1 − Ω2ρ2
ϕ′2

)

+ N(2)

]

dσ, (2.28)

where N(2) is an arbitrary function of σ which is related with the freedom of parametrization

on a curve.

By variation of the action (2.28) by N(2) and ϕ we have

(1 − q2 − Ω2ρ2)

(

ρ′2 +
ρ2

1 − Ω2ρ2
ϕ′2

)

= N2
(2), (2.29)

(1 − q2 − Ω2ρ2)ρ2

1 − Ω2ρ2
ϕ′ = N(2)

ℓ

|Ω| , (2.30)

where ℓ is a constant.
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Eliminating ϕ′ from (2.29) and (2.30) we have

ρ′2 =
N2

(2)

1 − q2 − Ω2ρ2

[

1 − ℓ2(1 − Ω2ρ2)

(1 − q2 − Ω2ρ2)Ω2ρ2

]

. (2.31)

We see that ρ is bounded as ρmin ≤ ρ ≤ ρmax because the right hand side of (2.31) should

be positive, where

ρ2
min =

1

2Ω2

(

1 + ℓ2 − q2 −
√

(1 + ℓ + q)(1 + ℓ − q)(1 − ℓ + q)(1 − ℓ − q)
)

,

ρ2
max =

1

2Ω2

(

1 + ℓ2 − q2 +
√

(1 + ℓ + q)(1 + ℓ − q)(1 − ℓ + q)(1 − ℓ − q)
)

,
(2.32)

with

1 + ℓ2 − q2 ≥ 0,

(1 + ℓ + q)(1 + ℓ − q)(1 − ℓ + q)(1 − ℓ − q) ≥ 0.
(2.33)

Allowed region of the parameters are shown in Fig.1.

If q 6= 0, it is easy to show that

(1 − Ω2ρ2
min)(1 − Ω2ρ2

max) > 0. (2.34)

It means that there are two cases:

(i) (1 − Ω2ρ2
min) > 0 and (1 − Ω2ρ2

max) > 0 for 1 − ℓ2 + q2 > 0,

(ii) (1 − Ω2ρ2
min) < 0 and (1 − Ω2ρ2

max) < 0 for 1 − ℓ2 + q2 < 0.
(2.35)

In the first case, the Killing vector field ξ is timelike everywhere on the world surface Σ,

while ξ is spacelike everywhere on Σ in the second case. In the both cases (i) and (ii), the

strings are rigidly rotating[13]. The solutions in the case (i) give the stationary rotating

strings.

There are three singularities of hred
AB given by (2.27), ρ = 0, ρ = ρq :=

√

1 − q2/|Ω| and

ρ = 1/|Ω|. For the stationary string, 0 ≤ ρ ≤ ρmax ≤ ρq. The point ρ = 0 is a fixed point of

the rotational isometry generated by the Killing vector ∂/∂ϕ. When q 6= 0 the point ρ = ρq

is also a fixed point of the rotation, that is, there are two centers in this space. When q = 0

the point ρ = ρq becomes a circle.

The scalar curvature of the metric (2.27) is calculated as

R =
−6q4 + 2 (Ω2ρ2 + 4) (1 − Ω2ρ2) q2 − 2 (1 − Ω2ρ2)

3

(1 − Ω2ρ2)2 (1 − q2 − Ω2ρ2)3 . (2.36)

One of the centers ρ = ρq is the curvature singularity, while the other center ρ = 0 is regular

point. The scalar curvature vanishes at ρ = 0 when q2 = 1/3. When q2 > 1/3, the scalar

8



FIG. 1: Parameter regions. The shaded areas are the parameter regions for the rigidly rotating

strings, the cases (i) and (ii). The dark shaded area is the parameter region for the stationary

rotating strings, the case (i).

curvature is positive everywhere, while the curvature becomes negative near ρ = 0 when

q2 < 1/3. When q is small enough, the scalar curvature has the minimum point near ρ = ρq.

Fig.2 shows the scalar curvature as the function of |Ω|ρ.

FIG. 2: Scalar curvature of the reduced two-dimensional space.

III. SOLUTIONS FOR STATIONARY ROTATING STRINGS

If we choose the function N(2) as

N(2) = 1 − q2 − Ω2ρ2, (3.1)
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two first order differential equations (2.30) and (2.31) become

ϕ′ =
ℓ

|Ω|
1 − Ω2ρ2

ρ2
, (3.2)

ρ′2 = (1 − q2 − Ω2ρ2) − ℓ2(1 − Ω2ρ2)

Ω2ρ2
. (3.3)

We also see that (2.26) with (2.28) simply gives

z = qσ. (3.4)

The change of signature of parameters:

ℓ → −ℓ, q → −q, and Ω → −Ω, (3.5)

can be absorbed by the inversion of coordinates:

ϕ → −ϕ, z → −z, and t → −t, (3.6)

respectively. Then we restrict ourselves in the case ℓ ≥ 0, q ≥ 0 and Ω ≥ 0.

A. Limiting cases

Before we obtain general solutions for the stationary rotating strings, we see that two

limiting cases of parameters ℓ, q, (1) ℓ + q = 1 and (2) ℓ = 0 (see Figs.3 and 4).

1. Helical strings

In the case of ℓ+ q = 1, we find from (2.32) that ρ should take a constant value ρ0, where

ρ0 = ρmax = ρmin =

√
ℓ

Ω
. (3.7)

When q 6= 0, using (3.2) and (3.4) we see that solutions are described by

ρ = ρ0, ϕ = Ωz. (3.8)

We call these solutions a helical strings. The shapes of helical strings are shown in Fig.3. In

the limit ℓ = 0 i.e., q = 1, the solutions reduce to the straight string solution.
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FIG. 3: Helical strings: ℓ + q = 1(q 6= 0). The three-dimensional snapshots are given in the left

panel, and the projection of strings to x − y plane, i.e., projected curves, are given in the middle,

where x, y are defined by (3.12). The dashed circle in the middle figure represents the light cylinder

ρ = 1/Ω. In each figure, the strings with the parameters (ℓ, q) = (0, 1), (9/10, 1/10), (1/2, 1/2),

(1/10, 9/10) are shown. The parameters on ℓ − q plane are plotted in the right panel.

We can calculate the proper length of snapshot of the string with respect to the metric

(2.11) as
∫

ds =

∫

√

(1 − Ω2ρ2)dρ2 + ρ2dϕ2 + (1 − Ω2ρ2)dz2. (3.9)

For the helical strings (3.8), the proper length for z-interval z ∼ z + ∆z is given by

∫

√

ρ2
0dϕ2 + (1 − Ω2ρ2

0)dz2 =

∫ z+∆z

z

dz = ∆z. (3.10)

It shows that all helical strings have the same proper length as the straight string with the

same z-interval.

In the inertial reference frame (2.5), the helical strings are described by

ρ̄ = ρ0,

ϕ̄ = Ω(z̄ + t̄).
(3.11)

The solutions consist of a down-moving wave of the angular frequency Ω and the amplitude

ρ0 given by (3.7) with the circular polarization. The pitch of helix, equivalently the wave

length, is given by 2πΩ−1. The two-dimensional world surface of helical string has another

Killing vector ∂z̄ + Ω∂ϕ̄ which is tangent to it in addition to ∂t̄ + Ω∂ϕ̄. It means the world

surface of helical string is a homogeneous space.
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2. Planar strings

In the case of ℓ = 0, it is convenient to use the rigidly rotating Cartesian coordinate

x = ρ cos ϕ, y = ρ sin ϕ. (3.12)

From (3.2) we can set ϕ = 0 (y = 0) without loss of generality. Then, from (3.3) and (2.31)

we have

q2

(

dx

dz

)2

= 1 − q2 − Ω2x2. (3.13)

The strings are confined in x − z plane, so we call these planer strings. The solutions for

(3.13) are

x = ρmax sin

(

Ωz

q

)

, (3.14)

where the amplitude of the waving string ρmax is given by the parameters Ω and q as

ρmax =

√

1 − q2

Ω
.

The shape of planer strings is depicted in Fig.4.

In the inertial Cartesian coordinate, the planar strings are described by

x̄ = ρmax sin

(

Ωz̄

q

)

cos Ωt̄,

ȳ = ρmax sin

(

Ωz̄

q

)

sin Ωt̄.

(3.15)

These strings consist of a standing wave which is superposition of an up-moving wave and

a down-moving wave in the equal amplitude. In the limit q = 1 the solution becomes the

straight string solution.

FIG. 4: Planar strings: ℓ = 0. The three-dimensional snapshots and projected curves are shown

for q = 1/5, 95/100, and 1 as same as Fig.3.
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3. General cases

In general, when ℓ 6= 0, two first order differential equations (3.2) and (3.3) are integrated

in the form

ρ2 =
1

2

{

(ρ2
max + ρ2

min) − (ρ2
max − ρ2

min) cos (2Ωσ)
}

, (3.16)

2ℓ

Ω2
tan (ϕ − ϕ0 + ℓΩσ) = (ρ2

max + ρ2
min) tan

(

Ωσ +
π

4

)

− (ρ2
max − ρ2

min), (3.17)

where ϕ0 is a constant. (see also ref[11].)

In the case of q = 0, (3.4) leads that strings are confined in a z = const. plane (x−y plane).

In this case, the stationarity of the strings breaks down at the light cylinder ρ = ρmax = 1/Ω.

Since the point ρ = 1/Ω is curvature singularity, the geodesics have end points there. This

case is a special case of Burden’s solution[16] and discussed in detail by Frolov et al[13]. The

shape of strings in x − y plane is shown in Fig.5.

FIG. 5: Strings in x − y plane: q = 0. The dashed circle in the left figure is the light cylinder

ρ = 1/Ω.

Both of the functions ρ(σ) and ϕ(σ) in the solution (3.16) and (3.17) are periodic with

respect to σ, but the periods are different. It is clear that

ρ(σ + σp) = ρ(σ), (3.18)

where σp = π/Ω. In this period of σ, ϕ varies as

ϕ(σ + σp) = ϕ(σ) + π(1 − ℓ). (3.19)

Suppose that ℓ is a rational number which can be expressed as ℓ = a/b, where a and b are

13



relatively prime. During σ increases by n times σp, ϕ varies as

ϕ(σ + nσp) = ϕ(σ) + nπ(1 − ℓ)

= ϕ(σ) + n
b − a

b
π. (3.20)

If the second term in the right hand side holds

n
b − a

b
π = 2πm, (n, m : natural numbers) (3.21)

ρ and ϕ have a common period. The least value of n, say nℓ, is determined by

nℓ =
2b

GCD
[

2b, (b − a)
] , (3.22)

where GCD [x, y] is the greatest common divisor of x, y. The projected curve in the reduced

two-dimensional space is closed if ℓ is rational. The closed curve consists of nℓ elements;

each element starts off ρmax, evolves through ρmin, and ends at ρmax. Till the curve returns

to its starting point, ϕ laps 2πmℓ, i.e., the curve wraps around the rotation axis mℓ times,

where mℓ is given by

mℓ =
1 − ℓ

2
nℓ. (3.23)

Suppose a closed geodesic in the reduced two-dimensional space which consists n elements

and which wraps around the rotation axis m times. The parameter ℓ for this string is given

by

ℓ = 1 − 2m

n
. (3.24)

When ℓ is irrational number, the two-dimensional geodesic is not closed.

The strings with rational ℓ have periodic structure in z with the period Zp = nℓqσp =

πnℓq/Ω. On the other hand, the strings with irrational ℓ have no periodicity. We show the

shapes of strings in Figs. 6 for ℓ = 1/5, 1/3, and 1/2.

IV. ENERGY, MOMENTUM AND ANGULAR MOMENTUM

By varying the action (2.1) by gµν we see that the string energy-momentum tensor T µν

is given by

√
−gT µν(xλ) = −µ

∫

d2ζΘµν(ζc)δ(4)
(

xλ − xλ(ζc)
)

, (4.1)

Θµν =
√
−γγab∂ax

µ∂bx
ν , (4.2)
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FIG. 6: Strings in the cases ℓ = 1/5, 1/3 and 1/2.

where xλ(ζc) is the solution of Σ.

In the inertial reference system (2.5), we can rewrite the energy-momentum tenser for

the stationary rotating strings as

√−gT µ̄ν̄(t̄, ρ̄, ϕ̄, z̄) = −µ

∫

dτdσ Θµ̄ν̄(σ) δ (t̄ − τ) δ (ρ̄ − ρ̄(σ)) δ (ϕ̄ − ϕ̄(τ, σ)) δ (z̄ − z̄(σ)) .

(4.3)

From (3.2), (3.4) and (2.31), we obtain Θµ̄ν̄ explicitly. (See Appendix B.)

Now, we define the string energy, E, the angular momentum, J , and the momentum

along the rotating axis, P . We consider infinitely long strings with periodic structure, i.e.,

ℓ is assumed to be a rational number, then we define E, J and P for one period, z̄ ∼ z̄ + Zp

15



as

E :=

∫ ρmax

ρmin

dρ̄

∫ 2π

0

dϕ̄

∫ Zp

0

dz̄
√
−g T t̄

ν̄(−∂t̄)
ν̄ = µ

∫ nlσp

0

dσ Θt̄
t̄(σ), (4.4)

J :=

∫ ρmax

ρmin

dρ̄

∫ 2π

0

dϕ̄

∫ Zp

0

dz̄
√
−g T t̄

ν̄(∂ϕ̄)ν̄ = −µ

∫ nlσp

0

dσ Θt̄
ϕ̄(σ), (4.5)

P :=

∫ ρmax

ρmin

dρ̄

∫ 2π

0

dϕ̄

∫ Zp

0

dz̄
√−g T t̄

ν̄(∂z̄)
ν̄ = −µ

∫ nlσp

0

dσ Θt̄
z̄(σ). (4.6)

It is easy to calculate these quantities as

E =
πµ

|Ω|nℓ(1 − ℓ2), (4.7)

J =
πµ

2Ω|Ω|nℓ(1 − ℓ2 − q2), (4.8)

P = −πµ

Ω
nℓℓq. (4.9)

We can also define the averaged values of theses quantities per unit length of z as

〈E〉 := E/Zp = µ
1 − ℓ2

|q| , (4.10)

〈J〉 := J/Zp =
µ

Ω

1 − ℓ2 − q2

2|q| , (4.11)

〈P 〉 := P/Zp = −µℓsign(Ωq). (4.12)

These quantities are applicable for the strings with irrational ℓ.

When ℓ 6= 0 and q 6= 0, we see P 6= 0, that is, the strings move along the rotating axis.

Although the rotating velocity of a string segment is perpendicular to the rotation axis, the

physical velocity of the Nambu-Goto string is orthogonal to the segment. Since the strings

with ℓ 6= 0 and q 6= 0 have inclination to the rotation axis, then the physical velocity of string

segments have the component along the rotation axis. This is the reason for non-vanishing

P . In the planar string case, ℓ = 0, the rotating velocity is physical, that is, the velocity

is orthogonal to the string because the planar string is confined in x − z plane. Then the

planar string does not move along the rotation axis. It is consistent with the fact that the

planar string consists of a standing wave as mentioned before.

In order to see the effective equation of state[2] for the stationary rotating strings, we

transform the reference system such that the averaged value of momentum 〈P 〉 vanishes.

Using the fact that

〈T t̄t̄ − T z̄z̄〉 and 〈T t̄t̄T z̄z̄ − (T t̄z̄)2〉 (4.13)

16



are invariant under the Lorentz transformation along the z̄-axis, we obtain effective line

density, µ̃, and effective tension, T̃ , as

µ̃ =
µ

2|q|
[

1 − ℓ2 + q2 +
√

(1 − q − ℓ)(1 − q + ℓ)(1 + q − ℓ)(1 + q + ℓ)
]

,

T̃ =
µ

2|q|
[

1 − ℓ2 + q2 −
√

(1 − q − ℓ)(1 − q + ℓ)(1 + q − ℓ)(1 + q + ℓ)
]

.
(4.14)

In general, it holds that µ̃T̃ = µ2 and µ̃ ≥ T̃ . In the case of helical strings, there exists

no inertial reference system such that 〈P 〉 vanishes because a single wave moves with the

velocity of light along the rotating axis.

V. CONCLUSION

We study stationary rotating Nambu-Goto strings in Minkowski spacetime. It has been

shown that the stationary rotating strings with an angular velocity Ω are described by

geodesics in two-dimensional curved spaces with positive definite metrics with a parameter,

q in this paper. The metrics admit a Killing vector which generates rotation symmetry,

then the geodesics in the two-dimensional spaces have a constant of motion, ℓ in this paper.

Therefore, the stationary rotating strings in Minkowski spacetime are characterized by three

parameters (Ω, q, ℓ).

One of the typical stationary rotating strings are the ‘helical strings’, |q|+ |ℓ| = 1, where

a snapshot looks a helix. The world surface of the helical string is the two-dimensional

homogeneous space embedded in Minkowski spacetime. For general (Ω, q, ℓ), stationary

rotating strings have quasi-periodic structure along the rotation axis. Only in the case of

rational ℓ, the strings have exact periodicity. The strings display much variation in the

shape which depends on q and ℓ.

We have obtained the following averaged values per unit length along the rotation axis:

energy, angular momentum and linear momentum along the axis. It should be noted that

the rotation of the strings around the axis induces the linear momentum along the axis

because of the inclination of string segments.

By the advantage of the analytic solutions of the string motion, we can calculate the

energy-momentum tensor easily. Then, we can study the gravitational field yielded by the

stationary rotating strings, especially gravitational wave emission. It is important to clarify

the property of the gravitational waves from the stationary rotating strings for verification
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of their existence in the universe. We will report this issue in near future[17].

It is also interesting problem to construct all cohomogeneity-one string in Minkowski[15,

18], de Sitter, and anti-de Sitter[19] spacetimes. Furthermore, it would be challenging work

to find the general solutions of stationary rotating strings in the black hole spacetimes as

an extended work of ref.[13].
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APPENDIX A: POTENTIAL IN TWO-DIMENSIONS

We consider a particle in the two-dimensional flat space driven by a potential force. In

general, every metric of two-dimensional space is written in conformal flat form. The metric

(2.27) is written in the form

ds2
red = (1 − q2 − Ω2ρ2)

(

dρ2 +
ρ2

1 − Ω2ρ2
dϕ̃2

)

= F (xA)
(

dr2 + r2dϕ2
)

,

(A1)

where

F =
1 − q2 − Ω2ρ2

1 − Ω2ρ2
(1 +

√

1 − Ω2ρ2)2e−2
√

1−Ω2ρ2

,

r =
ρ

1 +
√

1 − Ω2ρ2
e
√

1−Ω2ρ2

.
(A2)

Using the argument from (2.20) to (2.25) inversely, we see that geodesics in the metric

(A1) is equivalent to the orbits of the particle whose dynamics is governed by the action

S =

∫

[

pAx′A − N(2)H
]

dσ (A3)

with

H =
1

2
δABpApB + U(r),

U(r) = −1

2
F (ρ(r)),

(A4)
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where the particle should satisfy the Hamiltonian constraint H = 0. The shape of potential

U(r) is shown in Fig.7.

FIG. 7: Potentials for q = 1/5, 2/5 and 1/2 in two-dimensional flat space.

APPENDIX B: THE COMPONENTS OF Θµν

The components of Θµν are explicitly expressed in the following:

Θtt = −(1 − ℓ2),

Θtρ =
ℓ Ω

2ρ
(ρ2

max − ρ2
min) sin (2|Ω|σ) ,

ρ Θtϕ = −Ω2ρ2 − ℓ2

Ωρ
,

Θtz = qℓsign(Ω),

Θρρ =
Ω2

4ρ2
(ρ2

max − ρ2
min)

2 sin2 (2|Ω|σ) ,

ρ Θρϕ =
ℓ

2ρ2
(ρ2

max − ρ2
min) sin (2|Ω|σ) ,

Θρz =
q|Ω|
2ρ

(ρ2
max − ρ2

min) sin (2|Ω|σ) ,

ρ2 Θϕϕ = −Ω2ρ2

(

1 − ℓ2

Ω4ρ4

)

,

ρ Θϕz =
ℓq

|Ω|ρ,

Θzz = q2.

(B1)

In these expressions, ρ = ρ(σ) is given by (3.16).
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