571 research outputs found

    Bovine aortic endothelial cells are susceptible to Hantaan virus infection

    Get PDF
    AbstractHantavirus serotype Hantaan (HTN) is one of the causative agents of hemorrhagic fever with renal syndrome (HFRS, lethality up to 10%). The natural host of HTN is Apodemus agrarius. Recent studies have shown that domestic animals like cattle are sporadically seropositive for hantaviruses. In the present study, the susceptibility of bovine aortic endothelial cells (BAEC) expressing αVβ3-integrin to a HTN infection was investigated. Viral nucleocapsid protein and genomic RNA segments were detected in infected BAEC by indirect immunofluorescence assay, Western blot analysis, and reverse transcription-polymerase chain reaction (RT-PCR), respectively. The results of this study strongly support our previous observation on Puumala virus (PUU) that has been propagated efficiently in BAEC. These findings open a new window to contemplate the ecology of hantavirus infection and transmission route from animal to man

    A high-precision polarimeter

    Full text link
    We have built a polarimeter in order to measure the electron beam polarization in hall C at JLAB. Using a superconducting solenoid to drive the pure-iron target foil into saturation, and a symmetrical setup to detect the Moller electrons in coincidence, we achieve an accuracy of <1%. This sets a new standard for Moller polarimeters.Comment: 17 pages, 9 figures, submitted to N.I.

    Time-optimal synthesis of unitary transformations in coupled fast and slow qubit system

    Full text link
    In this paper, we study time-optimal control problems related to system of two coupled qubits where the time scales involved in performing unitary transformations on each qubit are significantly different. In particular, we address the case where unitary transformations produced by evolutions of the coupling take much longer time as compared to the time required to produce unitary transformations on the first qubit but much shorter time as compared to the time to produce unitary transformations on the second qubit. We present a canonical decomposition of SU(4) in terms of the subgroup SU(2)xSU(2)xU(1), which is natural in understanding the time-optimal control problem of such a coupled qubit system with significantly different time scales. A typical setting involves dynamics of a coupled electron-nuclear spin system in pulsed electron paramagnetic resonance experiments at high fields. Using the proposed canonical decomposition, we give time-optimal control algorithms to synthesize various unitary transformations of interest in coherent spectroscopy and quantum information processing.Comment: 8 pages, 3 figure

    Multiple-spin coherence transfer in linear Ising spin chains and beyond: numerically-optimized pulses and experiments

    Full text link
    We study multiple-spin coherence transfers in linear Ising spin chains with nearest neighbor couplings. These constitute a model for efficient information transfers in future quantum computing devices and for many multi-dimensional experiments for the assignment of complex spectra in nuclear magnetic resonance spectroscopy. We complement prior analytic techniques for multiple-spin coherence transfers with a systematic numerical study where we obtain strong evidence that a certain analytically-motivated family of restricted controls is sufficient for time-optimality. In the case of a linear three-spin system, additional evidence suggests that prior analytic pulse sequences using this family of restricted controls are time-optimal even for arbitrary local controls. In addition, we compare the pulse sequences for linear Ising spin chains to pulse sequences for more realistic spin systems with additional long-range couplings between non-adjacent spins. We experimentally implement the derived pulse sequences in three and four spin systems and demonstrate that they are applicable in realistic settings under relaxation and experimental imperfections-in particular-by deriving broadband pulse sequences which are robust with respect to frequency offsets.Comment: 11 page

    The novel BET inhibitor UM-002 reduces glioblastoma cell proliferation and invasion

    Get PDF
    Bromodomain and extraterminal domain (BET) proteins have emerged as therapeutic targets in multiple cancers, including the most common primary adult brain tumor glioblastoma (GBM). Although several BET inhibitors have entered clinical trials, few are brain penetrant. We have generated UM-002, a novel brain penetrant BET inhibitor that reduces GBM cell proliferation in vitro and in a human cerebral brain organoid model. Since UM-002 is more potent than other BET inhibitors, it could potentially be developed for GBM treatment. Furthermore, UM-002 treatment reduces the expression of cell-cycle related genes in vivo and reduces the expression of invasion related genes within the non-proliferative cells present in tumors as measured by single cell RNA-sequencing. These studies suggest that BET inhibition alters the transcriptional landscape of GBM tumors, which has implications for designing combination therapies. Importantly, they also provide an integrated dataset that combines in vitro and ex vivo studies with in vivo single-cell RNA-sequencing to characterize a novel BET inhibitor in GBM

    Mechanochemical synthesis and high temperature thermoelectric properties of calcium-doped lanthanum telluride La_(3−x)Ca_xTe_4

    Get PDF
    The thermoelectric properties from 300–1275 K of calcium-doped La_(3−x)Te_4 are reported. La_(3−x)Te_4 is a high temperature n-type thermoelectric material with a previously reported zT_(max) 1.1 at 1273 K and x = 0.23. Computational modeling suggests the La atoms define the density of states of the conduction band for La_(3−x)Te_4. Doping with Ca^(2+) on the La^(3+) site is explored as a means of modifying the density of states to improve the power factor and to achieve a finer control over the carrier concentration. High purity, oxide-free samples are produced by ball milling of the elements and consolidation by spark plasma sintering. Calcium substitution upon the lanthanum site was confirmed by a combination of Rietveld refinements of powder X-ray diffraction data and wave dispersive spectroscopy. A zT_(max) 1.2 is reached at 1273 K for the composition La_(2.2)Ca_(0.78)Te_4 and the relative increase compared to La_(3−x)Te_4 is attributed to the finer carrier concentration

    Final State Interaction Effects in pol 3He(pol e,e'p)

    Get PDF
    Asymmetries in quasi-elastic pol 3He(pol e,e'p) have been measured at a momentum transfer of 0.67 (GeV/c)^2 and are compared to a calculation which takes into account relativistic kinematics in the final state and a relativistic one-body current operator. With an exact solution of the Faddeev equation for the 3He-ground state and an approximate treatment of final state interactions in the continuum good agreement is found with the experimental data.Comment: 11 pages, 6 figures, submitted to Phys. Lett. B, revised version, sensitivity study to relativity and NN-potential adde

    Procalcitonin as marker of infection in patients with Goodpasture&apos;s syndrome is misleading

    Get PDF
    Abstract Background. Procalcitonin (PCT) is routinely measured to differentiate autoimmune disorders from infection. There are reports, however, where PCT is high in the absence of infection, i.e. in vasculitis. To investigate the value of PCT in Goodpasture&apos;s syndrome, we reviewed the charts of patients with Goodpasture&apos;s syndrome who were treated from 1996 to 2006. Methods. PCT (normal range &lt;0.5 ng/ml) was measured with an immunoluminometric assay, C-reactive protein (CRP; normal range &lt;5 mg/l) with nephelometry. Anti-glomerular basement membrane antibodies (normal range &lt;1:10) were measured with ELISA
    corecore