8 research outputs found

    Why A Catholic Physicians\u27 Guild?

    Get PDF

    Direct-strike lightning photographs, swept-flash attachment patterns, and flight conditions for storm hazards 1982

    Get PDF
    As part of the NASA Langley Research Center Storm Hazards Program, 241 thunderstorm penetrations were made in 1982 with an F-106B airplane in order to record direct-strike lightning data and the associated flight conditions. During these penetrations, the airplane received 156 direct lightning strikes; in addition, lightning transient data were recorded from 26 nearby lightning flashes. The tests were conducted within 150 nautical miles of Hampton, Virginia, assisted by ground-based weather-radar guidance from the NASA Wallops Flight Facility. The photographs of the lightning attachments taken from two onboard 16-mm color movie cameras and the associated strike attachment patterns are presented. A table of the flight conditions recorded at the time of each lightning event, and a table in which the data are cross-referenced with the previously published lightning electromagnetic waveform data are included

    The voltage-dependent anion channel, a major component of the tRNA import machinery in plant mitochondria

    No full text
    In plants, as in most eukaryotic cells, import of nuclear-encoded cytosolic tRNAs is an essential process for mitochondrial biogenesis. Despite its broad occurrence, the mechanisms governing RNA transport into mitochondria are far less understood than protein import. This article demonstrates by Northwestern and gel-shift experiments that the plant mitochondrial voltage-dependent anion channel (VDAC) protein interacts with tRNA in vitro. It shows also that this porin, known to play a key role in metabolite transport, is a major component of the channel involved in the tRNA translocation step through the plant mitochondrial outer membrane, as supported by inhibition of tRNA import into isolated mitochondria by VDAC antibodies and Ruthenium red. However VDAC is not a tRNA receptor on the outer membrane. Rather, two major components from the TOM (translocase of the outer mitochondrial membrane) complex, namely TOM20 and TOM40, are important for tRNA binding at the surface of mitochondria, suggesting that they are also involved in tRNA import. Finally, we show that proteins and tRNAs are translocated into plant mitochondria by different pathways. Together, these findings identify unexpected components of the tRNA import machinery and suggest that the plant tRNA import pathway has evolved by recruiting multifunctional proteins

    Dual targeting is the rule for organellar aminoacyl-tRNA synthetases in Arabidopsis thaliana

    No full text
    In plants, protein synthesis occurs in the cytosol, mitochondria, and plastids. Each compartment requires a full set of tRNAs and aminoacyl-tRNA synthetases. We have undertaken a systematic analysis of the targeting of organellar aminoacyl-tRNA synthetases in the model plant Arabidopsis thaliana. Dual targeting appeared to be a general rule. Among the 24 identified organellar aminoacyl-tRNA synthetases (aaRSs), 15 (and probably 17) are shared between mitochondria and plastids, and 5 are shared between cytosol and mitochondria (one of these aaRSs being present also in chloroplasts). Only two were shown to be uniquely chloroplastic and none to be uniquely mitochondrial. Moreover, there are no examples where the three aaRS genes originating from the three ancestral genomes still coexist. These results indicate that extensive exchange of aaRSs has occurred during evolution and that many are now shared between two or even three compartments. The findings have important implications for studies of the translation machinery in plants and on protein targeting and gene transfer in general
    corecore