532 research outputs found

    Interactive effect of STAT6 and IL13 gene polymorphisms on eczema status: results from a longitudinal and a cross-sectional study

    Get PDF
    BACKGROUND: Eczema is a prevalent skin disease that is mainly characterized by systemic deviation of immune response and defective epidermal barrier. Th2 cytokines, such as IL-13, and transcription factor STAT6 are key elements in the inflammatory response that characterize allergic disorders, including eczema. Previous genetic association studies showed inconsistent results for the association of single nucleotide polymorphisms (SNPs) with eczema. Our aim was to investigate whether SNPs in IL13 and STAT6 genes, which share a biological pathway, have an interactive effect on eczema risk.METHODS: Data from two independent population-based studies were analyzed, namely the Isle of Wight birth cohort study (IOW; n = 1,456) and for the purpose of replication the Swansea PAPA (Poblogaeth Asthma Prifysgol Abertawe; n = 1,445) cross-sectional study. Log-binomial regressions were applied to (i) account for the interaction between IL13 (rs20541) and STAT6 (rs1059513) polymorphisms and (ii) estimate the combined effect, in terms of risk ratios (RRs), of both risk factors on the risk of eczema.RESULTS: Under a dominant genetic model, the interaction term [IL13 (rs20541) x STAT6 (rs1059513)] was statistically significant in both studies (IOW: adjusted Pinteraction = 0.046; PAPA: Pinteraction = 0.037). The assessment of the combined effect associated with having risk genotypes in both SNPs yielded a 1.52-fold increased risk of eczema in the IOW study (95% confidence interval (CI): 1.05 -- 2.20; P = 0.028) and a 2.01-fold higher risk of eczema (95% CI: 1.29 -- 3.12; P = 0.002) in the PAPA study population.CONCLUSIONS: Our study adds to the current knowledge of genetic susceptibility by demonstrating for the first time an interactive effect between SNPs in IL13 (rs20541) and STAT6 (rs1059513) on the occurrence of eczema in two independent samples. Findings of this report further support the emerging evidence that points toward the existence of genetic effects that occur via complex networks involving gene-gene interactions (epistasis)

    Immunostimulatory oligonucleotides block allergic airway inflammation by inhibiting Th2 cell activation and IgE-mediated cytokine induction

    Get PDF
    A single treatment with a CpG-containing immunostimulatory DNA sequence (ISS) given before allergen challenge can inhibit T helper type 2 cell (Th2)–mediated airway responses in animal models of allergic asthma; however, the mechanism of this inhibition remains largely undefined. Here, we demonstrate that airway delivery of ISS before allergen challenge in Th2-primed mice acts in two distinct ways to prevent the allergic responses to this challenge. The first is to prevent induction of cytokines from allergen-specific Th2 cells, as demonstrated by the nearly complete inhibition of Th2 cytokine production, Th2-dependent functional responses, and gene induction patterns. ISS inhibits the Th2 response by rendering lung antigen-presenting cells (APCs) unable to effectively present antigen to Th2 cells, but not to Th1 cells. This loss of APC function correlates with a reduced expression of costimulatory molecules, including programmed cell death ligand (PD-L)1, PD-L2, CD40, CD80, CD86, and inducible T cell costimulator, and of major histocompatibility complex class II on CD11c+APCs from the airways of ISS-treated mice. The second important action of ISS is inhibition of immunoglobulin E–dependent release of Th2 cytokines, especially interleukin 4, from basophils and/or mast cells in the airways of Th2-primed mice. Thus, inhibition by ISS of allergic responses can be explained by two novel mechanisms that culminate in the inhibition of the principal sources of type 2 cytokines in the airways

    Mucosal sensitization to German cockroach involves protease-activated receptor-2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Allergic asthma is on the rise in developed countries. A common characteristic of allergens is that they contain intrinsic protease activity, and many have been shown to activate protease-activated receptor (PAR)-2 <it>in vitro</it>. The role for PAR-2 in mediating allergic airway inflammation has not been assessed using a real world allergen.</p> <p>Methods</p> <p>Mice (wild type or PAR-2-deficient) were sensitized to German cockroach (GC) feces (frass) or protease-depleted GC frass by either mucosal exposure or intraperitoneal injection and measurements of airway inflammation (IL-5, IL-13, IL-17A, and IFNΞ³ levels in the lung, serum IgE levels, cellular infiltration, mucin production) and airway hyperresponsiveness were performed.</p> <p>Results</p> <p>Following systemic sensitization, GC frass increased airway hyperresponsiveness, Th2 cytokine release, serum IgE levels, cellular infiltration and mucin production in wild type mice. Interestingly, PAR-2-deficient mice had similar responses as wild type mice. Since these data were in direct contrast to our finding that mucosal sensitization with GC frass proteases regulated airway hyperresponsiveness and mucin production in BALB/c mice (Page et. al. 2007 Resp Res 8:91), we backcrossed the PAR-2-deficient mice into the BALB/c strain. Sensitization to GC frass could now occur via the more physiologically relevant method of intratracheal inhalation. PAR-2-deficient mice had significantly reduced airway hyperresponsiveness, Th2 and Th17 cytokine release, serum IgE levels, and cellular infiltration compared to wild type mice when sensitization to GC frass occurred through the mucosa. To confirm the importance of mucosal exposure, mice were systemically sensitized to GC frass or protease-depleted GC frass via intraperitoneal injection. We found that removal of proteases from GC frass had no effect on airway inflammation when administered systemically.</p> <p>Conclusions</p> <p>We showed for the first time that allergen-derived proteases in GC frass elicit allergic airway inflammation via PAR-2, but only when allergen was administered through the mucosa. Importantly, our data suggest the importance of resident airway cells in the initiation of allergic airway disease, and could make allergen-derived proteases attractive therapeutic targets.</p

    CD4+CD25+ T cells protect against experimentally induced asthma and alter pulmonary dendritic cell phenotype and function

    Get PDF
    The role of natural CD4+CD25+ regulatory T (T reg) cells in the control of allergic asthma remains poorly understood. We explore the impact of T reg cell depletion on the allergic response in mice susceptible (A/J) or comparatively resistant (C3H) to the development of allergen-induced airway hyperresponsiveness (AHR). In C3H mice, anti-CD25–mediated T reg cell depletion before house dust mite treatment increased several features of the allergic diathesis (AHR, eosinophilia, and IgE), which was concomitant with elevated T helper type 2 (Th2) cytokine production. In similarly T reg cell–depleted A/J mice, we observed a moderate increase in airway eosinophilia but no effects on AHR, IgE levels, or Th2 cytokine synthesis. As our experiments suggested that T reg cell depletion in C3H mice before sensitization was sufficient to enhance the allergic phenotype, we characterized dendritic cells (DCs) in T reg cell–depleted C3H mice. T reg cell–depleted mice had increased numbers of pulmonary myeloid DCs with elevated expression of major histocompatibility complex class II, CD80, and CD86. Moreover, DCs from T reg cell–depleted mice demonstrated an increased capacity to stimulate T cell proliferation and Th2 cytokine production, which was concomitant with reduced IL-12 expression. These data suggest that resistance to allergen-driven AHR is mediated in part by CD4+CD25+ T reg cell suppression of DC activation and that the absence of this regulatory pathway contributes to susceptibility

    Evolution of Th2 responses : Characterization of IL-4/13 in sea bass (Dicentrarchus labrax L.) and studies of expression and biological activity

    Get PDF
    Acknowledgements This research was funded by the European Commission under the 7th Framework Programme for Research and Technological Development (FP7) of the European Union (Grant Agreement 311993 TARGETFISH). T.W. received funding from the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland). MASTS is funded by the Scottish Funding Council (grant reference number HR09011) and contributing institutions.Peer reviewedPublisher PD

    IL-22 mediates goblet cell hyperplasia and worm expulsion in intestinal helminth infection.

    Get PDF
    Type 2 immune responses are essential in protection against intestinal helminth infections. In this study we show that IL-22, a cytokine important in defence against bacterial infections in the intestinal tract, is also a critical mediator of anti-helminth immunity. After infection with Nippostrongylus brasiliensis, a rodent hookworm, IL-22-deficient mice showed impaired worm expulsion despite normal levels of type 2 cytokine production. The impaired worm expulsion correlated with reduced goblet cell hyperplasia and reduced expression of goblet cell markers. We further confirmed our findings in a second nematode model, the murine whipworm Trichuris muris. T.muris infected IL-22-deficient mice had a similar phenotype to that seen in N.brasiliensis infection, with impaired worm expulsion and reduced goblet cell hyperplasia. Ex vivo and in vitro analysis demonstrated that IL-22 is able to directly induce the expression of several goblet cell markers, including mucins. Taken together, our findings reveal that IL-22 plays an important role in goblet cell activation, and thus, a key role in anti-helminth immunity

    Allergen Uptake, Activation, and IL-23 Production by Pulmonary Myeloid DCs Drives Airway Hyperresponsiveness in Asthma-Susceptible Mice

    Get PDF
    Maladaptive, Th2-polarized inflammatory responses are integral to the pathogenesis of allergic asthma. As regulators of T cell activation, dendritic cells (DCs) are important mediators of allergic asthma, yet the precise signals which render endogenous DCs β€œpro-asthmatic”, and the extent to which these signals are regulated by the pulmonary environment and host genetics, remains unclear. Comparative phenotypic and functional analysis of pulmonary DC populations in mice susceptible (A/J), or resistant (C3H) to experimental asthma, revealed that susceptibility to airway hyperresponsiveness is associated with preferential myeloid DC (mDC) allergen uptake, and production of Th17-skewing cytokines (IL-6, IL-23), whereas resistance is associated with increased allergen uptake by plasmacytoid DCs. Surprisingly, adoptive transfer of syngeneic HDM-pulsed bone marrow derived mDCs (BMDCs) to the lungs of C3H mice markedly enhanced lung IL-17A production, and rendered them susceptible to allergen-driven airway hyperresponsiveness. Characterization of these BMDCs revealed levels of antigen uptake, and Th17 promoting cytokine production similar to that observed in pulmonary mDCs from susceptible A/J mice. Collectively these data demonstrate that the lung environment present in asthma-resistant mice promotes robust pDC allergen uptake, activation, and limits Th17-skewing cytokine production responsible for driving pathologic T cell responses central to the development of allergen-induced airway hyperresponsiveness

    Inflammatory cytokines, goblet cell hyperplasia and altered lung mechanics in Lgl1+/- mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neonatal lung injury, a leading cause of morbidity in prematurely born infants, has been associated with arrested alveolar development and is often accompanied by goblet cell hyperplasia. Genes that regulate alveolarization and inflammation are likely to contribute to susceptibility to neonatal lung injury. We previously cloned <it>Lgl1</it>, a developmentally regulated secreted glycoprotein in the lung. In rat, O<sub>2 </sub>toxicity caused reduced levels of <it>Lgl1</it>, which normalized during recovery. We report here on the generation of an <it>Lgl1 </it>knockout mouse in order to determine whether deficiency of <it>Lgl1 </it>is associated with arrested alveolarization and contributes to neonatal lung injury.</p> <p>Methods</p> <p>An <it>Lgl1 </it>knockout mouse was generated by introduction of a neomycin cassette in exon 2 of the <it>Lgl1 </it>gene. To evaluate the pulmonary phenotype of <it>Lgl1</it><sup>+/- </sup>mice, we assessed lung morphology, <it>Lgl1 </it>RNA and protein, elastin fibers and lung function. We also analyzed tracheal goblet cells, and expression of mucin, interleukin (IL)-4 and IL-13 as markers of inflammation.</p> <p>Results</p> <p>Absence of <it>Lgl1 </it>was lethal prior to lung formation. Postnatal <it>Lgl1</it><sup>+/- </sup>lungs displayed delayed histological maturation, goblet cell hyperplasia, fragmented elastin fibers, and elevated expression of T<sub>H</sub>2 cytokines (IL-4 and IL-13). At one month of age, reduced expression of <it>Lgl1 </it>was associated with elevated tropoelastin expression and altered pulmonary mechanics.</p> <p>Conclusion</p> <p>Our findings confirm that <it>Lgl1 </it>is essential for viability and is required for developmental processes that precede lung formation. <it>Lgl1</it><sup>+/- </sup>mice display a complex phenotype characterized by delayed histological maturation, features of inflammation in the post-natal period and altered lung mechanics at maturity. <it>Lgl1 </it>haploinsufficiency may contribute to lung disease in prematurity and to increased risk for late-onset respiratory disease.</p

    Exposure of neonates to Respiratory Syncytial Virus is critical in determining subsequent airway response in adults

    Get PDF
    BACKGROUND: Respiratory syncytial virus (RSV) is the most common cause of acute bronchiolitis in infants and the elderly. Furthermore, epidemiological data suggest that RSV infection during infancy is a potent trigger of subsequent wheeze and asthma development. However, the mechanism by which RSV contributes to asthma is complex and remains largely unknown. A recent study indicates that the age of initial RSV infection is a key factor in determining airway response to RSV rechallenge. We hypothesized that severe RSV infection during neonatal development significantly alters lung structure and the pulmonary immune micro-environment; and thus, neonatal RSV infection is crucial in the development of or predisposition to allergic inflammatory diseases such as asthma. METHODS: To investigate this hypothesis the present study was conducted in a neonatal mouse model of RSV-induced pulmonary inflammation and airway dysfunction. Seven-day-old mice were infected with RSV (2 Γ— 10(5 )TCID(50)/g body weight) and allowed to mature to adulthood. To determine if neonatal RSV infection predisposed adult animals to enhanced pathophysiological responses to allergens, these mice were then sensitized and challenged with ovalbumin. Various endpoints including lung function, histopathology, cytokine production, and cellularity in bronchoalveolar lavage were examined. RESULTS: RSV infection in neonates alone led to inflammatory airway disease characterized by airway hyperreactivity, peribronchial and perivascular inflammation, and subepithelial fibrosis in adults. If early RSV infection was followed by allergen exposure, this pulmonary phenotype was exacerbated. The initial response to neonatal RSV infection resulted in increased TNF-Ξ± levels in bronchoalveolar lavage. Interestingly, increased levels of IL-13 and mucus hyperproduction were observed almost three months after the initial infection with RSV. CONCLUSION: Neonatal RSV exposure results in long term pulmonary inflammation and exacerbates allergic airways disease. The early increase in TNF-Ξ± in the bronchoalveolar lavage implicates this inflammatory cytokine in orchestrating these events. Finally, the data presented emphasize IL-13 and TNF-Ξ± as potential therapeutic targets for treating RSV induced-asthma
    • …
    corecore