Abstract

<p>Abstract</p> <p>Background</p> <p>Neonatal lung injury, a leading cause of morbidity in prematurely born infants, has been associated with arrested alveolar development and is often accompanied by goblet cell hyperplasia. Genes that regulate alveolarization and inflammation are likely to contribute to susceptibility to neonatal lung injury. We previously cloned <it>Lgl1</it>, a developmentally regulated secreted glycoprotein in the lung. In rat, O<sub>2 </sub>toxicity caused reduced levels of <it>Lgl1</it>, which normalized during recovery. We report here on the generation of an <it>Lgl1 </it>knockout mouse in order to determine whether deficiency of <it>Lgl1 </it>is associated with arrested alveolarization and contributes to neonatal lung injury.</p> <p>Methods</p> <p>An <it>Lgl1 </it>knockout mouse was generated by introduction of a neomycin cassette in exon 2 of the <it>Lgl1 </it>gene. To evaluate the pulmonary phenotype of <it>Lgl1</it><sup>+/- </sup>mice, we assessed lung morphology, <it>Lgl1 </it>RNA and protein, elastin fibers and lung function. We also analyzed tracheal goblet cells, and expression of mucin, interleukin (IL)-4 and IL-13 as markers of inflammation.</p> <p>Results</p> <p>Absence of <it>Lgl1 </it>was lethal prior to lung formation. Postnatal <it>Lgl1</it><sup>+/- </sup>lungs displayed delayed histological maturation, goblet cell hyperplasia, fragmented elastin fibers, and elevated expression of T<sub>H</sub>2 cytokines (IL-4 and IL-13). At one month of age, reduced expression of <it>Lgl1 </it>was associated with elevated tropoelastin expression and altered pulmonary mechanics.</p> <p>Conclusion</p> <p>Our findings confirm that <it>Lgl1 </it>is essential for viability and is required for developmental processes that precede lung formation. <it>Lgl1</it><sup>+/- </sup>mice display a complex phenotype characterized by delayed histological maturation, features of inflammation in the post-natal period and altered lung mechanics at maturity. <it>Lgl1 </it>haploinsufficiency may contribute to lung disease in prematurity and to increased risk for late-onset respiratory disease.</p

    Similar works