162 research outputs found

    Observation of force-detected nuclear magnetic resonance in a homogeneous field

    Get PDF
    We report the experimental realization of BOOMERANG (better observation of magnetization, enhanced resolution, and no gradient), a sensitive and general method of magnetic resonance. The prototype millimeter-scale NMR spectrometer shows signal and noise levels in agreement with the design principles. We present H-1 and F-19 NMR in both solid and liquid samples, including time-domain Fourier transform NMR spectroscopy, multiple-pulse echoes, and heteronuclear J spectroscopy. By measuring a H-1-F-19 J coupling, this last experiment accomplishes chemically specific spectroscopy with force-detected NMR. In BOOMERANG, an assembly of permanent magnets provides a homogeneous field throughout the sample, while a harmonically suspended part of the assembly, a detector, is mechanically driven by spin-dependent forces. By placing the sample in a homogeneous field, signal dephasing by diffusion in a field gradient is made negligible, enabling application to liquids, in contrast to other force-detection methods. The design appears readily scalable to µm-scale samples where it should have sensitivity advantages over inductive detection with microcoils and where it holds great promise for application of magnetic resonance in biology, chemistry, physics, and surface science. We briefly discuss extensions of the BOOMERANG method to the µm and nm scales

    Force-detected nuclear magnetic resonance: Recent advances and future challenges

    Get PDF
    We review recent efforts to detect small numbers of nuclear spins using magnetic resonance force microscopy. Magnetic resonance force microscopy (MRFM) is a scanning probe technique that relies on the mechanical measurement of the weak magnetic force between a microscopic magnet and the magnetic moments in a sample. Spurred by the recent progress in fabricating ultrasensitive force detectors, MRFM has rapidly improved its capability over the last decade. Today it boasts a spin sensitivity that surpasses conventional, inductive nuclear magnetic resonance detectors by about eight orders of magnitude. In this review we touch on the origins of this technique and focus on its recent application to nanoscale nuclear spin ensembles, in particular on the imaging of nanoscale objects with a three-dimensional (3D) spatial resolution better than 10 nm. We consider the experimental advances driving this work and highlight the underlying physical principles and limitations of the method. Finally, we discuss the challenges that must be met in order to advance the technique towards single nuclear spin sensitivity -- and perhaps -- to 3D microscopy of molecules with atomic resolution.Comment: 15 pages & 11 figure

    An optical NMR spectrometer for Larmor-beat detection and high-resolution POWER NMR

    Get PDF
    Optical nuclear magnetic resonance (ONMR) is a powerful probe of electronic properties in III-V semiconductors. Larmor-beat detection (LBD) is a sensitivity optimized, time-domain NMR version of optical detection based on the Hanle effect. Combining LBD ONMR with the line-narrowing method of POWER (perturbations observed with enhanced resolution) NMR further enables atomically detailed views of local electronic features in III-Vs. POWER NMR spectra display the distribution of resonance shifts or line splittings introduced by a perturbation, such as optical excitation or application of an electric field, that is synchronized with a NMR multiple-pulse time-suspension sequence. Meanwhile, ONMR provides the requisite sensitivity and spatial selectivity to isolate local signals within macroscopic samples. Optical NMR, LBD, and the POWER method each introduce unique demands on instrumentation. Here, we detail the design and implementation of our system, including cryogenic, optical, and radio-frequency components. The result is a flexible, low-cost system with important applications in semiconductor electronics and spin physics. We also demonstrate the performance of our systems with high-resolution ONMR spectra of an epitaxial AlGaAs/GaAs heterojunction. NMR linewidths down to 4.1 Hz full width at half maximum were obtained, a 10^3-fold resolution enhancement relative any previous optically detected NMR experiment

    Method for suppressing noise in measurements

    Get PDF
    Techniques of combining separate but correlated measurements to form a second-order or higher order correlation function to suppress the effects of noise in the initial condition of a system capable of retaining memory of an initial state of the system with a characteristic relaxation time. At least two separate measurements are obtained from the system. The temporal separation between the two separate measurements is preferably comparable to or less than the characteristic relaxation time and is adjusted to allow for a correlation between two measurements

    Praxis des Täter-Opfer-Ausgleichs in Deutschland. Ergebnisse einer Erhebung zu Einrichtungen sowie zu Vermittlerinnen und Vermittlern

    Get PDF
    Praxis des Täter-Opfer-Ausgleichs in Deutschland. Ergebnisse einer Erhebung zu Einrichtungen (v.a. Fällen, Opfern und Tätern) sowie zu Vermittlerinnen und Vermittlern (v.a. Tätigkeitsfeld und Einstellungen

    Rapid self-assembly of brush block copolymers to photonic crystals

    Get PDF
    The reduced chain entanglement of brush polymers over their linear analogs drastically lowers the energetic barriers to reorganization. In this report, we demonstrate the rapid self-assembly of brush block copolymers to nanostructures with photonic bandgaps spanning the entire visible spectrum, from ultraviolet (UV) to near infrared (NIR). Linear relationships were observed between the peak wavelengths of reflection and polymer molecular weights. This work enables “bottom-up” fabrication of photonic crystals with application-tailored bandgaps, through synthetic control of the polymer molecular weight and the method of self-assembly. These polymers could be developed into NIR-reflective paints, to combat the “urban heat island effect” due to NIR photon thermalization

    Time Optimal Control in Spin Systems

    Get PDF
    In this paper, we study the design of pulse sequences for NMR spectroscopy as a problem of time optimal control of the unitary propagator. Radio frequency pulses are used in coherent spectroscopy to implement a unitary transfer of state. Pulse sequences that accomplish a desired transfer should be as short as possible in order to minimize the effects of relaxation and to optimize the sensitivity of the experiments. Here, we give an analytical characterization of such time optimal pulse sequences applicable to coherence transfer experiments in multiple-spin systems. We have adopted a general mathematical formulation, and present many of our results in this setting, mindful of the fact that new structures in optimal pulse design are constantly arising. Moreover, the general proofs are no more difficult than the specific problems of current interest. From a general control theory perspective, the problems we want to study have the following character. Suppose we are given a controllable right invariant system on a compact Lie group, what is the minimum time required to steer the system from some initial point to a specified final point? In NMR spectroscopy and quantum computing, this translates to, what is the minimum time required to produce a unitary propagator? We also give an analytical characterization of maximum achievable transfer in a given time for the two spin system.Comment: 20 Pages, 3 figure

    Nutation Sequences for Magnetic Resonance Imaging in Solids

    Get PDF
    Novel radio-frequency NMR pulse sequences are presented and their application to imaging of solids with use of rf field gradients is discussed. The sequences cause a nuclear spin to precess about the static field direction at a rate proportional to the strength of certain of the pulses. This forced precession is independent of the resonance offset and of couplings to other spins. The pulse-sequence design is described by means of coherent averaging theory and is confirmed experimentally and numerically

    Solar cell efficiency enhancement via light trapping in printable resonant dielectric nanosphere arrays

    Get PDF
    Resonant dielectric structures are a promising platform for addressing the key challenge of light trapping in thin-film solar cells. We experimentally and theoretically demonstrate efficiency enhancements in solar cells from dielectric nanosphere arrays. Two distinct amorphous silicon photovoltaic architectures were improved using this versatile light-trapping platform. In one structure, the colloidal monolayer couples light into the absorber in the near-field acting as a photonic crystal light-trapping element. In the other, it acts in the far-field as a graded index antireflection coating to further improve a cell which already included a state-of-the-art random light-trapping texture to achieve a conversion efficiency over 11%. For the near-field flat cell architecture, we directly fabricated the colloidal monolayer on the device through Langmuir–Blodgett deposition in a scalable process that does not degrade the active material. In addition, we present a novel transfer printing method, which utilizes chemical crosslinking of an optically thin adhesion layer to tether sphere arrays to the device surface. The minimally invasive processing conditions of this transfer method enable the application to a wide range of solar cells and other optoelectronic devices. False-color SEM image of an amorphous silicon solar cell with resonant spheres on top
    • …
    corecore