2,700 research outputs found

    Emerg. Infect. Dis

    Get PDF
    The multidrug-resistant (MDR) Salmonella enterica serotype Newport strain that produces CMY-2 β-lactamase(Newport MDR-AmpC) was the source of sporadic cases and outbreaks in humans in France during 2000–2005. Because this strain was not detected in food animals, it was most likely introduced into France through imported food products

    Generalization of Kirchhoff's Law of Thermal Radiation: The Inherent Relations Between Quantum Efficiency and Emissivity

    Full text link
    Planck's law of thermal radiation depends on the temperature, TT, and the emissivity, ϵ\epsilon, of a body, where emissivity is the coupling of heat to radiation that depends on both phonon-electron nonradiative interactions and electron-photon radiative interactions. Another property of a body is absorptivity, α\alpha, which only depends on the electron-photon radiative interactions. At thermodynamic equilibrium, nonradiative interactions are balanced, resulting in Kirchhoff's law of thermal radiation that equals these two properties, i.e., ϵ=α\epsilon = \alpha. For non-equilibrium, quantum efficiency (QEQE) describes the statistics of photon emission, which like emissivity depends on both radiative and nonradiative interactions. Past generalized Planck's equation extends Kirchhoff's law out of equilibrium by scaling the emissivity with the pump-dependent chemical-potential μ\mu, obscuring the relations between the body properties. Here we theoretically and experimentally demonstrate a prime equation relating these properties in the form of ϵ=α(1−QE)\epsilon = \alpha(1-QE), which is in agreement with a recent universal modal radiation law for all thermal emitters. At equilibrium, these relations are reduced to Kirchhoff's law. Our work lays out the fundamental evolution of non-thermal emission with temperature, which is critical for the development of lighting and energy devices.Comment: 14 pages, 16 figures. arXiv admin note: substantial text overlap with arXiv:2104.1013

    Critical Behavior of Light

    Full text link
    Light is shown to exhibit critical and tricritical behavior in passive mode-locked lasers with externally injected pulses. It is a first and unique example of critical phenomena in a one-dimensional many body light-mode system. The phase diagrams consist of regimes with continuous wave, driven para-pulses, spontaneous pulses via mode condensation, and heterogeneous pulses, separated by phase transition lines which terminate with critical or tricritical points. Enhanced nongaussian fluctuations and collective dynamics are observed at the critical and tricritical points, showing a mode system analog of the critical opalescence phenomenon. The critical exponents are calculated and shown to comply with the mean field theory, which is rigorous in the light system.Comment: RevTex, 5 pages, 3 figure

    Swimming into peptidomimetic chemical space using pepMMsMIMIC

    Get PDF
    pepMMsMIMIC is a novel web-oriented peptidomimetic compound virtual screening tool based on a multi-conformers three-dimensional (3D)-similarity search strategy. Key to the development of pepMMsMIMIC has been the creation of a library of 17 million conformers calculated from 3.9 million commercially available chemicals collected in the MMsINC® database. Using as input the 3D structure of a peptide bound to a protein, pepMMsMIMIC suggests which chemical structures are able to mimic the protein–protein recognition of this natural peptide using both pharmacophore and shape similarity techniques. We hope that the accessibility of pepMMsMIMIC (freely available at http://mms.dsfarm.unipd.it/pepMMsMIMIC) will encourage medicinal chemists to de-peptidize protein–protein recognition processes of biological interest, thus increasing the potential of in silico peptidomimetic compound screening of known small molecules to expedite drug development

    Variation in Wolbachia cidB gene, but not cidA, is associated with cytoplasmic incompatibility mod phenotype diversity in Culex pipiens

    Get PDF
    Endosymbiotic Wolbachia bacteria are, to date, considered the most widespread symbionts in arthropods and are the cornerstone of major biological control strategies. Such a high prevalence is based on the ability of Wolbachia to manipulate their hosts' reproduction. One manipulation called cytoplasmic incompatibility (CI) is based on the death of the embryos generated by crosses between infected males and uninfected females or between individuals infected with incompatible Wolbachia strains. CI can be seen as a modification-rescue system (or mod-resc) in which paternal Wolbachia produce mod factors, inducing embryonic defects, unless the maternal Wolbachia produce compatible resc factors. Transgenic experiments in Drosophila melanogaster and Saccharomyces cerevisiae converged towards a model where the cidB Wolbachia gene is involved in the mod function while cidA is involved in the resc function. However, as cidA expression in Drosophila males was required to observe CI, it has been proposed that cidA could be involved in both resc and mod functions. A recent correlative study in natural Culex pipiens mosquito populations has revealed an association between specific cidA and cidB variations and changes in mod phenotype, also suggesting a role for both these genes in mod diversity. Here, by studying cidA and cidB genomic repertoires of individuals from newly sampled natural C. pipiens populations harbouring wPipIV strains from North Italy, we reinforce the link between cidB variation and mod phenotype variation fostering the involvement of cidB in the mod phenotype diversity. However, no association between any cidA variants or combination of cidA variants and mod phenotype variation was observed. Taken together our results in natural C. pipiens populations do not support the involvement of cidA in mod phenotype variation

    Heart and Lung Transplantation in the United States, 1997–2006

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73552/1/j.1600-6143.2008.02175.x.pd

    Large-eddy simulation of the lid-driven cubic cavity flow by the spectral element method

    Get PDF
    This paper presents the large-eddy simulation of the lid-driven cubic cavity flow by the spectral element method (SEM) using the dynamic model. Two spectral filtering techniques suitable for these simulations have been implemented. Numerical results for Reynolds number Re=12′000\text{Re}=12'000 are showing very good agreement with other experimental and DNS results found in the literature

    Costs of insensitive acetylcholinesterase insecticide resistance for the malaria vector Anopheles gambiae homozygous for the G119S mutation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The G119S mutation responsible for insensitive acetylcholinesterase resistance to organophosphate and carbamate insecticides has recently been reported from natural populations of <it>Anopheles gambiae </it>in West Africa. These reports suggest there are costs of resistance associated with this mutation for <it>An. gambiae</it>, especially for homozygous individuals, and these costs could be influential in determining the frequency of carbamate resistance in these populations.</p> <p>Methods</p> <p>Life-history traits of the AcerKis and Kisumu strains of <it>An. gambiae </it>were compared following the manipulation of larval food availability in three separate experiments conducted in an insecticide-free laboratory environment. These two strains share the same genetic background, but differ in being homozygous for the presence or absence of the G119S mutation at the <it>ace-1 </it>locus, respectively.</p> <p>Results</p> <p>Pupae of the resistant strain were significantly more likely to die during pupation than those of the susceptible strain. Ages at pupation were significantly earlier for the resistant strain and their dry starved weights were significantly lighter; this difference in weight remained when the two strains were matched for ages at pupation.</p> <p>Conclusions</p> <p>The main cost of resistance found for <it>An. gambiae </it>mosquitoes homozygous for the G119S mutation was that they were significantly more likely to die during pupation than their susceptible counterparts, and they did so across a range of larval food conditions. Comparing the frequency of G119S in fourth instar larvae and adults emerging from the same populations would provide a way to test whether this cost of resistance is being expressed in natural populations of <it>An. gambiae </it>and influencing the dynamics of this resistance mutation.</p

    Evidence of Introgression of the ace-1R Mutation and of the ace-1 Duplication in West African Anopheles gambiae s. s

    Get PDF
    Background: The role of inter-specific hybridisation is of particular importance in mosquito disease vectors for predicting the evolution of insecticide resistance. Two molecular forms of Anopheles gambiae s.s., currently recognized as S and M taxa, are considered to be incipient sibling species. Hybrid scarcity in the field was suggested that differentiation of M and S taxa is maintained by limited or absent gene flow. However, recent studies have revealed shared polymorphisms within the M and S forms, and a better understanding of the occurrence of gene flow is needed. One such shared polymorphism is the G119S mutation in the ace-1 gene (which is responsible for insecticide resistance); this mutation has been described in both the M and S forms of A. gambiae s.s. Methods and Results: To establish whether the G119S mutation has arisen independently in each form or by genetic introgression, we analysed coding and non-coding sequences of ace-1 alleles in M and S mosquitoes from representative field populations. Our data revealed many polymorphic sites shared by S and M forms, but no diversity was associated with the G119S mutation. These results indicate that the G119S mutation was a unique event and that genetic introgression explains the observed distribution of the G119S mutation within the two forms. However, it was impossible to determine from our data whether the mutation occurred first in the S form or in the M form. Unexpectedly, sequence analysis of some resistant individuals revealed a duplication of the ace-1 gene that was observed in both A. gambiae s.s. M and S forms. Again, the distribution of this duplication in the two forms most likely occurred through introgression. Conclusions: These results highlight the need for more research to understand the forces driving the evolution of insecticide resistance in malaria vectors and to regularly monitor resistance in mosquito populations of Africa
    • …
    corecore