443 research outputs found

    Integrated Physiological, Proteomic, and Metabolomic Analysis of Ultra Violet (UV) Stress Responses and Adaptation Mechanisms in Pinus radiata

    Get PDF
    Globally expected changes in environmental conditions, especially the increase of UV irradiation, necessitate extending our knowledge of the mechanisms mediating tree species adaptation to this stress. This is crucial for designing new strategies to maintain future forest productivity. Studies focused on environmentally realistic dosages of UV irradiation in forest species are scarce. Pinus spp. are commercially relevant trees and not much is known about their adaptation to UV. In this work, UV treatment and recovery of Pinus radiata plants with dosages mimicking future scenarios, based on current models of UV radiation, were performed in a time-dependent manner. The combined metabolome and proteome analysis were complemented with measurements of + physiological parameters and gene expression. Sparse PLS analysis revealed complex molecular interaction networks of molecular and physiological data. Early responses prevented phototoxicity by reducing photosystem activity and the electron transfer chain together with the accumulation of photoprotectors and photorespiration. Apart from the reduction in photosynthesis as consequence of the direct UV damage on the photosystems, the primary metabolism was rearranged to deal with the oxidative stress while minimizing ROS production. New protein kinases and proteases related to signaling, coordination, and regulation of UV stress responses were revealed. All these processes demonstrate a complex molecular interaction network extending the current knowledge on UV-stress adaptation in pine

    C-Band Dual-Doppler Retrievals in Complex Terrain: Improving the Knowledge of Severe Storm Dynamics in Catalonia

    Get PDF
    Convective activity in Catalonia (northeastern Spain) mainly occurs during summer and autumn, with severe weather occurring 33 days per year on average. In some cases, the storms have unexpected propagation characteristics, likely due to a combination of the complex topography and the thunderstorms' propagation mechanisms. Partly due to the local nature of the events, numerical weather prediction models are not able to accurately nowcast the complex mesoscale mechanisms (i.e., local influence of topography). This directly impacts the retrieved position and motion of the storms, and consequently, the likely associated storm severity. Although a successful warning system based on lightning and radar observations has been developed, there remains a lack of knowledge of storm dynamics that could lead to forecast improvements. The present study explores the capabilities of the radar network at the Meteorological Service of Catalonia to retrieve dual-Doppler wind fields to study the dynamics of Catalan thunderstorms. A severe thunderstorm that splits and a tornado-producing supercell that is channeled through a valley are used to demonstrate the capabilities of an advanced open source technique that retrieves dynamical variables from C-band operational radars in complex terrain. For the first time in the Iberian Peninsula, complete 3D storm-relative winds are obtained, providing information about the internal dynamics of the storms. This aids in the analyses of the interaction between different storm cells within a system and/or the interaction of the cells with the local topography

    Time-resolved impulse response of the magnetoplasmon resonance in a two-dimensional electron gas

    Full text link
    We have used optically excited ultrashort electrical pulses to measure the magnetoplasmon resonance of a two-dimensional electron gas formed in an AlGaAs/GaAs heterostructure at frequencies up to 200 gigahertz. This is accomplished by incorporating the sample into a guided wave probe operating in a pumped (^{3}He) system. We are able to detect the resonance by launching a stimulus pulse in the guide, and monitoring the system response in a time resolved pump-probe arrangement. Data obtained from measurements yield resonant frequencies that agree with the magnetoplasmon dispersion relation.Comment: 4 pages, 4 figure

    Molecular response of Deinococcus radiodurans to simulated microgravity explored by proteometabolomic approach

    Get PDF
    Regarding future space exploration missions and long-term exposure experiments, a detailed investigation of all factors present in the outer space environment and their effects on organisms of all life kingdoms is advantageous. Influenced by the multiple factors of outer space, the extremophilic bacterium Deinococcus radiodurans has been long-termly exposed outside the international Space Station in frames of the tanpopo orbital mission. the study presented here aims to elucidate molecular key components in D. radiodurans, which are responsible for recognition and adaptation to simulated microgravity. D. radiodurans cultures were grown for two days on plates in a fast-rotating 2-D clinostat to minimize sedimentation, thus simulating reduced gravity conditions. Subsequently, metabolites and proteins were extracted and measured with mass spectrometry-based techniques. our results emphasize the importance of certain signal transducer proteins, which showed higher abundances in cells grown under reduced gravity. these proteins activate a cellular signal cascade, which leads to differences in gene expressions. Proteins involved in stress response, repair mechanisms and proteins connected to the extracellular milieu and the cell envelope showed an increased abundance under simulated microgravity. focusing on the expression of these proteins might present a strategy of cells to adapt to microgravity conditions

    Radar climatology of the COPS region

    Get PDF
    A climatology of convection initiation (CI) and convective enhancements (CE) has been developed using radar reflectivity data in southwestern Germany and eastern France over the period of May�August of 2000�2006 and 2008. The study region included the Vosges Mountains of France, the Rhine Valley which straddles France and Germany, the Black ForestMountains and the SwabianMountains of Germany. Convection occurred frequently during the summer months throughout the study region. The CI density (number of initiations per square km) illustrates preferential formation in the mountain regions while the CE events spanned both mountains and valleys nearly equally. There is a strongmid-day peak of the CI events suggesting that diurnal heating is critical for CI in the region. The very strong thunderstorms (>46 dBZ) first occurred in the mountains and �2 h later in the Rhine Valley. During the summer of 2007, the Convective and Orographically-induced Precipitation Study (COPS) field campaign was conducted with the objective of obtaining improved understanding of convective processes and short-term quantitative precipitation forecasting in low-mountain regions. Comparisons were made between the radar climatology results and the COPS summer. The COPS summer exhibited preferential CI density in the mountainous regions but not as pronounced as the climatology. The COPS summer had a similar diurnal peak of CI events as climatology but the ratio of daytime to nighttime CI (1.7), or amplitude of the diurnal cycle, was less than that of climatology (3.0). While both the 8-year climatology and COPS summer were dominated by daytime, locally-forced CI occurrences, the broad distribution of daytime CI events and increase in nighttime events observed during COPS indicate a more active synoptic pattern in 2007

    Coulomb drag between one-dimensional conductors

    Full text link
    We have analyzed Coulomb drag between currents of interacting electrons in two parallel one-dimensional conductors of finite length LL attached to external reservoirs. For strong coupling, the relative fluctuations of electron density in the conductors acquire energy gap MM. At energies larger than Γ=const×vexp(LM/v)/L+Γ+\Gamma = const \times v_- \exp (-LM/v_-)/L + \Gamma_{+}, where Γ+\Gamma_{+} is the impurity scattering rate, and for L>v/ML>v_-/M, where vv_- is the fluctuation velocity, the gap leads to an ``ideal'' drag with almost equal currents in the conductors. At low energies the drag is suppressed by coherent instanton tunneling, and the zero-temperature transconductance vanishes, indicating the Fermi liquid behavior.Comment: 5 twocolumn pages in RevTex, added 1 eps-Figure and calculation of trans-resistanc

    Recurrent allopolyploidizations diversify ecophysiological traits in marsh orchids (Dactylorhiza majalis s.l.).

    Get PDF
    Whole-genome duplication has shaped the evolution of angiosperms and other organisms, and is important for many crops. Structural reorganization of chromosomes and repatterning of gene expression are frequently observed in allopolyploids, with physiological and ecological consequences. Recurrent origins from different parental populations are widespread among polyploids, resulting in an array of lineages that provide excellent models to uncover mechanisms of adaptation to divergent environments in early phases of polyploid evolution. We integrate here transcriptomic and ecophysiological comparative studies to show that sibling allopolyploid marsh orchid species (Dactylorhiza, Orchidaceae) occur in different habitats (low nutrient fens vs. meadows with mesic soils) and are characterized by a complex suite of intertwined, pronounced ecophysiological differences between them. We uncover distinct features in leaf elemental chemistry, light-harvesting, photoprotection, nutrient transport and stomata activity of the two sibling allopolyploids, which appear to match their specific ecologies, in particular soil chemistry differences at their native sites. We argue that the phenotypic divergence between the sibling allopolyploids has a clear genetic basis, generating ecological barriers that maintain distinct, independent lineages, despite pervasive interspecific gene flow. This suggests that recurrent origins of polyploids bring about a long-term potential to trigger and maintain functional and ecological diversity in marsh orchids and other groups

    Unpredictability of metabolism—the key role of metabolomics science in combination with next-generation genome sequencing

    Get PDF
    Next-generation sequencing provides technologies which sequence whole prokaryotic and eukaryotic genomes in days, perform genome-wide association studies, chromatin immunoprecipitation followed by sequencing and RNA sequencing for transcriptome studies. An exponentially growing volume of sequence data can be anticipated, yet functional interpretation does not keep pace with the amount of data produced. In principle, these data contain all the secrets of living systems, the genotype–phenotype relationship. Firstly, it is possible to derive the structure and connectivity of the metabolic network from the genotype of an organism in the form of the stoichiometric matrix N. This is, however, static information. Strategies for genome-scale measurement, modelling and predicting of dynamic metabolic networks need to be applied. Consequently, metabolomics science—the quantitative measurement of metabolism in conjunction with metabolic modelling—is a key discipline for the functional interpretation of whole genomes and especially for testing the numerical predictions of metabolism based on genome-scale metabolic network models. In this context, a systematic equation is derived based on metabolomics covariance data and the genome-scale stoichiometric matrix which describes the genotype–phenotype relationship

    Otopathogenic Pseudomonas aeruginosa Enters and Survives Inside Macrophages

    Get PDF
    Otitis media (OM) is a broad term describing a group of infectious and inflammatory disorders of the middle ear. Despite antibiotic therapy, acute OM can progress to chronic suppurative otitis media (CSOM) characterized by ear drum perforation and purulent discharge. Pseudomonas aeruginosa is the most common pathogen associated with CSOM. Although, macrophages play an important role in innate immune responses but their role in the pathogenesis of P. aeruginosa-induced CSOM is not known. The objective of this study is to examine the interaction of P. aeruginosa with primary macrophages. We observed that P. aeruginosa enters and multiplies inside human and mouse primary macrophages. This bacterial entry in macrophages requires both microtubule and actin dependent processes. Transmission electron microscopy demonstrated that P. aeruginosa was present in membrane bound vesicles inside macrophages. Interestingly, deletion of oprF expression in P. aeruginosa abrogates its ability to survive inside macrophages. Our results suggest that otopathogenic P. aeruginosa entry and survival inside macrophages is OprF-dependent. The survival of bacteria inside macrophages will lead to evasion of killing and this lack of pathogen clearance by phagocytes contributes to the persistence of infection in CSOM. Understanding host–pathogen interaction will provide novel avenues to design effective treatment modalities against OM
    corecore