383 research outputs found
Femtosecond photonic viral inactivation probed using solid-state nanopores
We report on detection of virus inactivation using femtosecond laser radiation by measuring the
conductance of a solid state nanopore designed for detecting single particles. Conventional methods
of assaying for viral inactivation based on plaque forming assays require 24–48 h for bacterial growth.
Nanopore conductance measurements provide information on morphological changes at a single
virion level.We show that analysis of a time series of nanopore conductance can quantify the detection
of inactivation, requiring only a few minutes from collection to analysis. Morphological changes were
verified by dynamic light scattering. Statistical analysis maximizing the information entropy provides
a measure of the log reduction value. This work provides a rapid method for assaying viral inactivation
with femtosecond lasers using solid-state nanopores.First author draf
Transverse Electronic Transport through DNA Nucleotides with Functionalized Graphene Electrodes
Graphene nanogaps and nanopores show potential for the purpose of electrical
DNA sequencing, in particular because single-base resolution appears to be
readily achievable. Here, we evaluated from first principles the advantages of
a nanogap setup with functionalized graphene edges. To this end, we employed
density functional theory and the non-equilibrium Green's function method to
investigate the transverse conductance properties of the four nucleotides
occurring in DNA when located between the opposing functionalized graphene
electrodes. In particular, we determined the electrical tunneling current
variation as a function of the applied bias and the associated differential
conductance at a voltage which appears suitable to distinguish between the four
nucleotides. Intriguingly, we observe for one of the nucleotides a negative
differential resistance effect.Comment: 19 pages, 7 figure
Label-Free Optical Detection of Biomolecular Translocation through Nanopore Arrays
In recent years, nanopores have emerged as exceptionally promising single-molecule sensors due to their ability to detect biomolecules at subfemtomole levels in a label-free manner. Development of a high-throughput nanopore-based biosensor requires multiplexing of nanopore measurements. Electrical detection, however, poses a challenge, as each nanopore circuit must be electrically independent, which requires complex nanofluidics and embedded electrodes. Here, we present an optical method for simultaneous measurements of the ionic current across an array of solid-state nanopores, requiring no additional fabrication steps. Proof-of-principle experiments are conducted that show simultaneous optical detection and characterization of ssDNA and dsDNA using an array of pores. Through a comparison with electrical measurements, we show that optical measurements are capable of accessing equivalent transmembrane current information
Femtosecond Photonic Viral Inactivation Probed Using Solid-State Nanopores
We report on the detection of inactivation of virus particles using
femtosecond laser radiation by measuring the conductance of a solid state
nanopore designed for detecting single virus particles. Conventional methods of
assaying for viral inactivation based on plaque forming assays require 24-48
hours for bacterial growth. Nanopore conductance measurements provide
information on morphological changes at a single virion level. We show that
analysis of a time series of nanopore conductance can quantify the detection of
inactivation, requiring only a few minutes from collection to analysis.
Morphological changes were verified by Dynamic Light Scattering (DLS).
Statistical analysis maximizing the information entropy provides a measure of
the Log-reduction value. Taken together, our work provides a rapid method for
assaying viral inactivation with femtosecond lasers using solid-state
nanopores.Comment: 6 Figures with caption
Synthetic Protocells Interact with Viral Nanomachinery and Inactivate Pathogenic Human Virus
We present a new antiviral strategy and research tool that could be applied to a wide range of enveloped viruses that infect human beings via membrane fusion. We test this strategy on two emerging zoonotic henipaviruses that cause fatal encephalitis in humans, Nipah (NiV) and Hendra (HeV) viruses. In the new approach, artificial cell-like particles (protocells) presenting membrane receptors in a biomimetic manner were developed and found to attract and inactivate henipavirus envelope glycoprotein pseudovirus particles, preventing infection. The protocells do not accumulate virus during the inactivation process. The use of protocells that interact with, but do not accumulate, viruses may provide significant advantages over current antiviral drugs, and this general approach may have wide potential for antiviral development
The Potential and Challenges of Nanopore Sequencing
A nanopore-based device provides single-molecule detection and analytical capabilities that are achieved by electrophoretically driving molecules in solution through a nano-scale pore. The nanopore provides a highly confined space within which single nucleic acid polymers can be analyzed at high throughput by one of a variety of means, and the perfect processivity that can be enforced
in a narrow pore ensures that the native order of the nucleobases in a polynucleotide is reflected in the sequence of signals that is detected. Kilobase length polymers (single-stranded genomic DNA or RNA) or small molecules (e.g., nucleosides) can be identified and characterized without amplification or labeling, a unique analytical capability that makes inexpensive, rapid DNA sequencing
a possibility. Further research and development to overcome current challenges to nanopore identification of each successive nucleotide in a DNA strand offers the prospect of ‘third generation’ instruments that will sequence a diploid mammalian genome for ~$1,000 in ~24 h.Molecular and Cellular BiologyPhysic
Synthesis and Detection of Oxygen-18 Labeled Phosphate
Phosphorus (P) has only one stable isotope and therefore tracking P dynamics in ecosystems and inferring sources of P loading to water bodies have been difficult. Researchers have recently employed the natural abundance of the ratio of 18O/16O of phosphate to elucidate P dynamics. In addition, phosphate highly enriched in oxygen-18 also has potential to be an effective tool for tracking specific sources of P in the environment, but has so far been used sparingly, possibly due to unavailability of oxygen-18 labeled phosphate (OLP) and uncertainty in synthesis and detection. One objective of this research was to develop a simple procedure to synthesize highly enriched OLP. Synthesized OLP is made up of a collection of species that contain between zero and four oxygen-18 atoms and, as a result, the second objective of this research was to develop a method to detect and quantify each OLP species. OLP was synthesized by reacting either PCl5 or POCl3 with water enriched with 97 atom % oxygen-18 in ambient atmosphere under a fume hood. Unlike previous reports, we observed no loss of oxygen-18 enrichment during synthesis. Electrospray ionization mass spectrometertry (ESI-MS) was used to detect and quantify each species present in OLP. OLP synthesized from POCl3 contained 1.2% P18O16O3, 18.2% P18O216O2, 67.7% P18O316O, and 12.9% P18O4, and OLP synthesized from PCl5 contained 0.7% P16O4, 9.3% P18O316O, and 90.0% P18O4. We found that OLP can be synthesized using a simple procedure in ambient atmosphere without the loss of oxygen-18 enrichment and ESI-MS is an effective tool to detect and quantify OLP that sheds light on the dynamics of synthesis in ways that standard detection methods cannot
Temperature and electrolyte optimization of the α-hemolysin latch sensing zone for detection of base modification in double-stranded DNA
The latch region of the wild-type protein pore α-hemolysin (α-HL) constitutes a sensing zone for individual abasic sites (and furan analogs) in double-stranded DNA (dsDNA). The presence of an abasic site or furan within a DNA duplex, electrophoretically captured in the α-HL vestibule and positioned at the latch region, can be detected based on the current blockage prior to duplex unzipping. We investigated variations in blockage current as a function of temperature (12–35°C) and KCl concentration (0.15–1.0 M) to understand the origin of the current signature and to optimize conditions for identifying the base modification. In 1 M KCl solution, substitution of a furan for a cytosine base in the latch region results in an ∼8 kJ mol−1 decrease in the activation energy for ion transport through the protein pore. This corresponds to a readily measured ∼2 pA increase in current at room temperature. Optimal resolution for detecting the presence of a furan in the latch region is achieved at lower KCl concentrations, where the noise in the measured blockage current is significantly lower. The noise associated with the blockage current also depends on the stability of the duplex (as measured from the melting temperature), where a greater noise in the measured blockage current is observed for less stable duplexes
Proton-Binding Sites of Acid-Sensing Ion Channel 1
Acid-sensing ion channels (ASICs) are proton-gated cation channels that exist throughout the mammalian central and peripheral nervous systems. ASIC1 is the most abundant of all the ASICs and is likely to modulate synaptic transmission. Identifying the proton-binding sites of ASCI1 is required to elucidate its pH-sensing mechanism. By using the crystal structure of ASIC1, the protonation states of each titratable site of ASIC1 were calculated by solving the Poisson-Boltzmann equation under conditions wherein the protonation states of all these sites are simultaneously in equilibrium. Four acidic-acidic residue pairs—Asp238-Asp350, Glu220-Asp408, Glu239-Asp346, and Glu80-Glu417—were found to be highly protonated. In particular, the Glu80-Glu417 pair in the inner pore was completely protonated and possessed 2 H+, implying its possible importance as a proton-binding site. The pKa of Glu239, which forms a pair with a possible pH-sensing site Asp346, differs among each homo-trimer subunit due to the different H-bond pattern of Thr237 in the different protein conformations of the subunits. His74 possessed a pKa of ≈6–7. Conservation of His74 in the proton-sensitive ASIC3 that lacks a residue corresponding to Asp346 may suggest its possible pH-sensing role in proton-sensitive ASICs
Increasing the Analytical Sensitivity by Oligonucleotides Modified with Para- and Ortho-Twisted Intercalating Nucleic Acids – TINA
The sensitivity and specificity of clinical diagnostic assays using DNA hybridization techniques are limited by the dissociation of double-stranded DNA (dsDNA) antiparallel duplex helices. This situation can be improved by addition of DNA stabilizing molecules such as nucleic acid intercalators. Here, we report the synthesis of a novel ortho-Twisted Intercalating Nucleic Acid (TINA) amidite utilizing the phosphoramidite approach, and examine the stabilizing effect of ortho- and para-TINA molecules in antiparallel DNA duplex formation. In a thermal stability assay, ortho- and para-TINA molecules increased the melting point (Tm) of Watson-Crick based antiparallel DNA duplexes. The increase in Tm was greatest when the intercalators were placed at the 5′ and 3′ termini (preferable) or, if placed internally, for each half or whole helix turn. Terminally positioned TINA molecules improved analytical sensitivity in a DNA hybridization capture assay targeting the Escherichia coli rrs gene. The corresponding sequence from the Pseudomonas aeruginosa rrs gene was used as cross-reactivity control. At 150 mM ionic strength, analytical sensitivity was improved 27-fold by addition of ortho-TINA molecules and 7-fold by addition of para-TINA molecules (versus the unmodified DNA oligonucleotide), with a 4-fold increase retained at 1 M ionic strength. Both intercalators sustained the discrimination of mismatches in the dsDNA (indicated by ΔTm), unless placed directly adjacent to the mismatch – in which case they partly concealed ΔTm (most pronounced for para-TINA molecules). We anticipate that the presented rules for placement of TINA molecules will be broadly applicable in hybridization capture assays and target amplification systems
- …