345 research outputs found

    Optical Communications Link to Airborne Transceiver

    Get PDF
    An optical link from Earth to an aircraft demonstrates the ability to establish a link from a ground platform to a transceiver moving overhead. An airplane has a challenging disturbance environment including airframe vibrations and occasional abrupt changes in attitude during flight. These disturbances make it difficult to maintain pointing lock in an optical transceiver in an airplane. Acquisition can also be challenging. In the case of the aircraft link, the ground station initially has no precise knowledge of the aircraft s location. An airborne pointing system has been designed, built, and demonstrated using direct-drive brushless DC motors for passive isolation of pointing disturbances and for high-bandwidth control feedback. The airborne transceiver uses a GPS-INS system to determine the aircraft s position and attitude, and to then illuminate the ground station initially for acquisition. The ground transceiver participates in link-pointing acquisition by first using a wide-field camera to detect initial illumination from the airborne beacon, and to perform coarse pointing. It then transfers control to a high-precision pointing detector. Using this scheme, live video was successfully streamed from the ground to the aircraft at 270 Mb/s while simultaneously downlinking a 50 kb/s data stream from the aircraft to the ground

    Servo design and analysis for the Thirty Meter Telescope primary mirror actuators

    Get PDF
    The Thirty Meter Telescope has 492 primary mirror segments, each incorporated into a Primary Segment Assembly (PSA), each of which in turn has three actuators that control piston, tip, and tilt, for a total of 1476 actuators. Each actuator has a servo loop that controls small motions (nanometers) and large motions (millimeters). Candidate actuators were designed and tested that fall into the categories of "hard" and "soft," depending on the offload spring stiffness relative to the PSA structural stiffness. Dynamics models for each type of actuator are presented, which respectively use piezo-electric transducers and voice coils. Servo design and analysis are presented that include assessments of stability, performance, robustness, and control structure interaction. The analysis is presented for a single PSA on a rigid base, and then using Zernike approximations the analysis is repeated for 492 mirror segments on a flexible mirror cell. Servo requirements include low-frequency stiffness, needed for wind rejection; reduced control structure interaction, specified by a bound on the sensitivity function; and mid-frequency damping, needed to reduce vibration transmission. The last of these requirements, vibration reduction, was found to be an important distinguishing characteristic for actuator selection. Hard actuators have little inherent damping, which is improved using PZT shunt circuits and force feedback, but still these improvements were found to result in less damping than is provided by the soft actuator. Results of the servo analysis were used for an actuator down-select study

    Demonstration of a power-recycled Michelson interferometer with Fabry-Perot arms by frontal modulation

    Get PDF
    Large-scale gravitational-wave detectors currently under construction such as the LIGO detectors use multiple-mirror resonant optical systems containing several surfaces at which the relative phase of interfering light beams must be controlled. We describe a tabletop experiment that demonstrates a scheme for extracting signals in such an interferometer corresponding to deviations from perfect interference

    Servo design and analysis for the Thirty Meter Telescope primary mirror actuators

    Get PDF
    The Thirty Meter Telescope has 492 primary mirror segments, each incorporated into a Primary Segment Assembly (PSA), each of which in turn has three actuators that control piston, tip, and tilt, for a total of 1476 actuators. Each actuator has a servo loop that controls small motions (nanometers) and large motions (millimeters). Candidate actuators were designed and tested that fall into the categories of "hard" and "soft," depending on the offload spring stiffness relative to the PSA structural stiffness. Dynamics models for each type of actuator are presented, which respectively use piezo-electric transducers and voice coils. Servo design and analysis are presented that include assessments of stability, performance, robustness, and control structure interaction. The analysis is presented for a single PSA on a rigid base, and then using Zernike approximations the analysis is repeated for 492 mirror segments on a flexible mirror cell. Servo requirements include low-frequency stiffness, needed for wind rejection; reduced control structure interaction, specified by a bound on the sensitivity function; and mid-frequency damping, needed to reduce vibration transmission. The last of these requirements, vibration reduction, was found to be an important distinguishing characteristic for actuator selection. Hard actuators have little inherent damping, which is improved using PZT shunt circuits and force feedback, but still these improvements were found to result in less damping than is provided by the soft actuator. Results of the servo analysis were used for an actuator down-select study

    The Physics of LIGO

    Get PDF
    In the spring term of 1994, I organized a course at Caltech on the The Physics of LIGO (i.e., the physics of the Laser Interferometer Gravitational Wave Observatory). The course consisted of eighteen 1.5-hour-long tutorial lectures, delivered by members of the LIGO team and others, and it was aimed at advanced undergraduates and graduate students in physics, applied physics and in engineering and applied sciences and also at interested postdoctoral fellows, research staff, and faculty

    Limits on Gravitational-Wave Emission from Selected Pulsars Using LIGO Data

    Get PDF
    We place direct upper limits on the amplitude of gravitational waves from 28 isolated radio pulsars by a coherent multidetector analysis of the data collected during the second science run of the LIGO interferometric detectors. These are the first direct upper limits for 26 of the 28 pulsars. We use coordinated radio observations for the first time to build radio-guided phase templates for the expected gravitational-wave signals. The unprecedented sensitivity of the detectors allows us to set strain upper limits as low as a few times 10^(-24). These strain limits translate into limits on the equatorial ellipticities of the pulsars, which are smaller than 10^(-5) for the four closest pulsars

    Observational Limit on Gravitational Waves from Binary Neutron Stars in the Galaxy

    Get PDF
    Using optimal matched filtering, we search 25 hours of data from the LIGO 40-meter prototype laser interferometric gravitational-wave detector for gravitational-wave chirps emitted by coalescing binary systems within our Galaxy. This is the first test of this filtering technique on real interferometric data. An upper limit on the rate R of neutron star binary inspirals in our Galaxy is obtained: with 90% confidence, R< 0.5/hour. Similar experiments with LIGO interferometers will provide constraints on the population of tight binary neutron star systems in the Universe.Comment: RevTeX, minor revisions, exactly as published in PRL 83 (1999) p1498, 4 pages, 2 figures include
    • 

    corecore