11,847 research outputs found

    The turbulent generation of outward traveling Alfvenic fluctuations in the solar wind

    Get PDF
    From an analysis of the incompressible MHD equations, it is concluded that the frequent observation of outward propagating Alfvenic fluctuations in the solar wind can arise from early stages of in situ turbulent evolution, and need not reflect coronal processes

    Chow's theorem and universal holonomic quantum computation

    Full text link
    A theorem from control theory relating the Lie algebra generated by vector fields on a manifold to the controllability of the dynamical system is shown to apply to Holonomic Quantum Computation. Conditions for deriving the holonomy algebra are presented by taking covariant derivatives of the curvature associated to a non-Abelian gauge connection. When applied to the Optical Holonomic Computer, these conditions determine that the holonomy group of the two-qubit interaction model contains SU(2)Ă—SU(2)SU(2) \times SU(2). In particular, a universal two-qubit logic gate is attainable for this model.Comment: 13 page

    Spontaneous creation of non-zero angular momentum modes in tunnel-coupled two-dimensional degenerate Bose gases

    Full text link
    We investigate the dynamics of two tunnel-coupled two-dimensional degenerate Bose gases. The reduced dimensionality of the clouds enables us to excite specific angular momentum modes by tuning the coupling strength, thereby creating striking patterns in the atom density profile. The extreme sensitivity of the system to the coupling and initial phase difference results in a rich variety of subsequent dynamics, including vortex production, complex oscillations in relative atom number and chiral symmetry breaking due to counter-rotation of the two clouds.Comment: 7 pages, 5 figure

    How Pharmaceutical Industry Employees Manage Competing Moral Commitments

    Get PDF
    The pharmaceutical industry has been criticised for pervasive misconduct. These concerns have generally resulted in increasing regulation. While such regulation is no doubt necessary, it tends to assume that everyone working for pharmaceutical companies is equally motivated by commerce, without much understanding of the specific views and experiences of those who work in different parts of the industry. In order to gain a more nuanced picture of the work that goes on in the “medical affairs” departments of pharmaceutical companies, we conducted 15 semi-structured interviews with professionals working in medical departments of companies in Sydney, Australia. We show that this group of pharmaceutical professionals are committed to their responsibilities both to patients, research participants, and the public and to their companies. Despite the discrepancies between these commitments, our participants did not express much cognitive dissonance, and this appeared to stem from their use of two dialectically related strategies, one of which embraces commerce and the other of which resists the commercial imperative. We interpret these findings through the lens of institutional theory and consider their implications for pharmaceutical ethics and governance. Keywords: Qualitative research; Social values; Pharmaceutical industry; Pharmaceutical ethicsNHMR

    Time complexity and gate complexity

    Full text link
    We formulate and investigate the simplest version of time-optimal quantum computation theory (t-QCT), where the computation time is defined by the physical one and the Hamiltonian contains only one- and two-qubit interactions. This version of t-QCT is also considered as optimality by sub-Riemannian geodesic length. The work has two aims: one is to develop a t-QCT itself based on physically natural concept of time, and the other is to pursue the possibility of using t-QCT as a tool to estimate the complexity in conventional gate-optimal quantum computation theory (g-QCT). In particular, we investigate to what extent is true the statement: time complexity is polynomial in the number of qubits if and only if so is gate complexity. In the analysis, we relate t-QCT and optimal control theory (OCT) through fidelity-optimal computation theory (f-QCT); f-QCT is equivalent to t-QCT in the limit of unit optimal fidelity, while it is formally similar to OCT. We then develop an efficient numerical scheme for f-QCT by modifying Krotov's method in OCT, which has monotonic convergence property. We implemented the scheme and obtained solutions of f-QCT and of t-QCT for the quantum Fourier transform and a unitary operator that does not have an apparent symmetry. The former has a polynomial gate complexity and the latter is expected to have exponential one because a series of generic unitary operators has a exponential gate complexity. The time complexity for the former is found to be linear in the number of qubits, which is understood naturally by the existence of an upper bound. The time complexity for the latter is exponential. Thus the both targets are examples satisfyng the statement above. The typical characteristics of the optimal Hamiltonians are symmetry under time-reversal and constancy of one-qubit operation, which are mathematically shown to hold in fairly general situations.Comment: 11 pages, 6 figure

    Weak Hopf algebras corresponding to Cartan matrices

    Full text link
    We replace the group of group-like elements of the quantized enveloping algebra Uq(g)U_q({\frak{g}}) of a finite dimensional semisimple Lie algebra g{\frak g} by some regular monoid and get the weak Hopf algebra wqd(g){\frak{w}}_q^{\sf d}({\frak g}). It is a new subclass of weak Hopf algebras but not Hopf algebras. Then we devote to constructing a basis of wqd(g){\frak{w}}_q^{\sf d}({\frak g}) and determine the group of weak Hopf algebra automorphisms of wqd(g){\frak{w}}_q^{\sf d}({\frak g}) when qq is not a root of unity.Comment: 21 page

    Directional characteristics of lunar thermal emission

    Get PDF
    Directional characteristics and brightness temperatures of thermal lunar emissio

    Velocity field distributions due to ideal line vortices

    Get PDF
    We evaluate numerically the velocity field distributions produced by a bounded, two-dimensional fluid model consisting of a collection of parallel ideal line vortices. We sample at many spatial points inside a rigid circular boundary. We focus on ``nearest neighbor'' contributions that result from vortices that fall (randomly) very close to the spatial points where the velocity is being sampled. We confirm that these events lead to a non-Gaussian high-velocity ``tail'' on an otherwise Gaussian distribution function for the Eulerian velocity field. We also investigate the behavior of distributions that do not have equilibrium mean-field probability distributions that are uniform inside the circle, but instead correspond to both higher and lower mean-field energies than those associated with the uniform vorticity distribution. We find substantial differences between these and the uniform case.Comment: 21 pages, 9 figures. To be published in Physical Review E (http://pre.aps.org/) in May 200

    On the Alexandrov Topology of sub-Lorentzian Manifolds

    Full text link
    It is commonly known that in Riemannian and sub-Riemannian Geometry, the metric tensor on a manifold defines a distance function. In Lorentzian Geometry, instead of a distance function it provides causal relations and the Lorentzian time-separation function. Both lead to the definition of the Alexandrov topology, which is linked to the property of strong causality of a space-time. We studied three possible ways to define the Alexandrov topology on sub-Lorentzian manifolds, which usually give different topologies, but agree in the Lorentzian case. We investigated their relationships to each other and the manifold's original topology and their link to causality.Comment: 20 page
    • …
    corecore