85 research outputs found

    What can be learned from binding energy differences about nuclear structure: the example of delta V_{pn}

    Full text link
    We perform an analysis of a binding energy difference called delta V_{pn}(N,Z) =- 1/4(E(Z,N)-E(Z,N-2)-E(Z-2,N)+ E(Z-2,N-2) in the framework of a realistic nuclear model. Using the angular-momentum and particle-number projected generator coordinate method and the Skyrme interaction SLy4, we analyze the contribution brought to delta V_{pn} by static deformation and dynamic fluctuations around the mean-field ground state. Our method gives a good overall description of delta V_{pn} throughout the chart of nuclei with the exception of the anomaly related to the Wigner energy along the N=Z line. The main conclusions of our analysis are that (i) the structures seen in the systematics of delta V_{pn} throughout the chart of nuclei can be easily explained combining a smooth background related to the symmetry energy and correlation energies due to deformation and collective fluctuations; (ii) the characteristic pattern of delta V_{pn} around a doubly-magic nucleus is a trivial consequence of the asymmetric definition of delta V_{pn}, and not due to a the different structure of these nuclei; (iii) delta V_{pn} does not provide a very reliable indicator for structural changes; (iv) \delta V_{pn} does not provide a reliable measure of the proton-neutron interaction in the nuclear EDF, neither of that between the last filled orbits, nor of the one summed over all orbits; (v) delta V_{pn} does not provide a conclusive benchmark for nuclear EDF methods that is superior or complementary to other mass filters such as two-nucleon separation energies or Q values.Comment: 19 pages and 12 figure

    Solution of the Nuclear Shell Model by Symmetry-Dictated Truncation

    Full text link
    The dynamical symmetries of the Fermion Dynamical Symmetry Model are used as a principle of truncation for the spherical shell model. Utilizing the usual principle of energy-dictated truncation to select a valence space, and symmetry-dictated truncation to select a collective subspace of that valence space, we are able to reduce the full shell model space to one of manageable dimensions with modern supercomputers, even for the heaviest nuclei. The resulting shell model then consists of diagonalizing an effective Hamiltonian within the restricted subspace. This theory is not confined to any symmetry limits, and represents a full solution of the original shell model if the appropriate effective interaction of the truncated space can be determined. As a first step in constructing that interaction, we present an empirical determination of its matrix elements for the collective subspace with no broken pairs in a representative set of nuclei with 130A250130\le A \le 250. We demonstrate that this effective interaction can be parameterized in terms of a few quantities varying slowly with particle number, and is capable of describing a broad range of low-energy observables for these nuclei. Finally we give a brief discussion of extending these methods to include a single broken collective pair.Comment: invited paper for J. Phys. G, 57 pages, Latex, 18 figures a macro are available under request at [email protected]

    Effect of Tumor-Treating Fields Plus Maintenance Temozolomide vs Maintenance Temozolomide Alone on Survival in Patients With Glioblastoma: A Randomized Clinical Trial.

    Get PDF
    Tumor-treating fields (TTFields) is an antimitotic treatment modality that interferes with glioblastoma cell division and organelle assembly by delivering low-intensity alternating electric fields to the tumor. To investigate whether TTFields improves progression-free and overall survival of patients with glioblastoma, a fatal disease that commonly recurs at the initial tumor site or in the central nervous system. In this randomized, open-label trial, 695 patients with glioblastoma whose tumor was resected or biopsied and had completed concomitant radiochemotherapy (median time from diagnosis to randomization, 3.8 months) were enrolled at 83 centers (July 2009-2014) and followed up through December 2016. A preliminary report from this trial was published in 2015; this report describes the final analysis. Patients were randomized 2:1 to TTFields plus maintenance temozolomide chemotherapy (n = 466) or temozolomide alone (n = 229). The TTFields, consisting of low-intensity, 200 kHz frequency, alternating electric fields, was delivered (≥ 18 hours/d) via 4 transducer arrays on the shaved scalp and connected to a portable device. Temozolomide was administered to both groups (150-200 mg/m2) for 5 days per 28-day cycle (6-12 cycles). Progression-free survival (tested at α = .046). The secondary end point was overall survival (tested hierarchically at α = .048). Analyses were performed for the intent-to-treat population. Adverse events were compared by group. Of the 695 randomized patients (median age, 56 years; IQR, 48-63; 473 men [68%]), 637 (92%) completed the trial. Median progression-free survival from randomization was 6.7 months in the TTFields-temozolomide group and 4.0 months in the temozolomide-alone group (HR, 0.63; 95% CI, 0.52-0.76; P < .001). Median overall survival was 20.9 months in the TTFields-temozolomide group vs 16.0 months in the temozolomide-alone group (HR, 0.63; 95% CI, 0.53-0.76; P < .001). Systemic adverse event frequency was 48% in the TTFields-temozolomide group and 44% in the temozolomide-alone group. Mild to moderate skin toxicity underneath the transducer arrays occurred in 52% of patients who received TTFields-temozolomide vs no patients who received temozolomide alone. In the final analysis of this randomized clinical trial of patients with glioblastoma who had received standard radiochemotherapy, the addition of TTFields to maintenance temozolomide chemotherapy vs maintenance temozolomide alone, resulted in statistically significant improvement in progression-free survival and overall survival. These results are consistent with the previous interim analysis. clinicaltrials.gov Identifier: NCT00916409

    The Intentional Use of Service Recovery Strategies to Influence Consumer Emotion, Cognition and Behaviour

    Get PDF
    Service recovery strategies have been identified as a critical factor in the success of. service organizations. This study develops a conceptual frame work to investigate how specific service recovery strategies influence the emotional, cognitive and negative behavioural responses of . consumers., as well as how emotion and cognition influence negative behavior. Understanding the impact of specific service recovery strategies will allow service providers' to more deliberately and intentionally engage in strategies that result in positive organizational outcomes. This study was conducted using a 2 x 2 between-subjects quasi-experimental design. The results suggest that service recovery has a significant impact on emotion, cognition and negative behavior. Similarly, satisfaction, negative emotion and positive emotion all influence negative behavior but distributive justice has no effect

    NMDA receptors and BAX are essential for Aβ impairment of LTP

    Get PDF
    Accumulation of amyloid-β (Aβ) is a hallmark of Alzheimer’s disease, a neurodegenerative disorder in which synapse loss and dysfunction are early features. Acute exposure of hippocampal slices to Aβ leads to changes in synaptic plasticity, specifically reduced long-term potentiation (LTP) and enhanced long-term depression (LTD), with no change in basal synaptic transmission. We also report here that D-AP5, a non-selective NMDA receptor antagonist, completely prevented Aβ-mediated inhibition of LTP in area CA1 of the hippocampus. Ro25-6981, an antagonist selective for GluN2B (NR2B) NMDA receptors, only partially prevented this Aβ action, suggesting that GluN2A and GluN2B receptors may both contribute to Aβ suppression of LTP. The effect of Aβ on LTP was also examined in hippocampal slices from BAX −/− mice and wild-type littermates. Aβ failed to block LTP in hippocampal slices from BAX −/− mice, indicating that BAX is essential for Aβ inhibition of LTP

    Random matrix ensembles with random interactions: Results for EGUE(2)-SU(4)

    Full text link
    We introduce in this paper embedded Gaussian unitary ensemble of random matrices, for mm fermions in Ω\Omega number of single particle orbits, generated by random two-body interactions that are SU(4) scalar, called EGUE(2)-SU(4). Here the SU(4) algebra corresponds to Wigner's supermultiplet SU(4) symmetry in nuclei. Formulation based on Wigner-Racah algebra of the embedding algebra U(4Ω)U(Ω)SU(4)U(4\Omega) \supset U(\Omega) \otimes SU(4) allows for analytical treatment of this ensemble and using this analytical formulas are derived for the covariances in energy centroids and spectral variances. It is found that these covariances increase in magnitude as we go from EGUE(2) to EGUE(2)-\cs to EGUE(2)-SU(4) implying that symmetries may be responsible for chaos in finite interacting quantum systems.Comment: 11 pages, 2 figures, some formulas in Table 1 corrected, Table 1 changed to Table 1 and 2, Fig. 2 modifie

    Customer emotions in service failure and recovery encounters

    Get PDF
    Emotions play a significant role in the workplace, and considerable attention has been given to the study of employee emotions. Customers also play a central function in organizations, but much less is known about customer emotions. This chapter reviews the growing literature on customer emotions in employee–customer interfaces with a focus on service failure and recovery encounters, where emotions are heightened. It highlights emerging themes and key findings, addresses the measurement, modeling, and management of customer emotions, and identifies future research streams. Attention is given to emotional contagion, relationships between affective and cognitive processes, customer anger, customer rage, and individual differences

    Isobaric analog states in the f

    No full text
    corecore