3,406 research outputs found
Semiclassical and Quantum Black Holes and their Evaporation, de Sitter and Anti-de Sitter Regimes, Gravitational and String Phase Transitions
An effective string theory in physically relevant cosmological and black hole
space times is reviewed. Explicit computations of the quantum string entropy,
partition function and quantum string emission by black holes (Schwarzschild,
rotating, charged, asymptotically flat, de Sitter dS and AdS space times) in
the framework of effective string theory in curved backgrounds provide an
amount of new quantum gravity results as: (i) gravitational phase transitions
appear with a distinctive universal feature: a square root branch point
singularity in any space time dimensions. This is of the type of the de Vega -
Sanchez transition for the thermal self-gravitating gas of point particles.
(ii) There are no phase transitions in AdS alone. (iii) For background,
upper bounds of the Hubble constant H are found, dictated by the quantum string
phase transition.(iv) The Hawking temperature and the Hagedorn temperature are
the same concept but in different (semiclassical and quantum) gravity regimes
respectively. (v) The last stage of black hole evaporation is a microscopic
string state with a finite string critical temperature which decays as usual
quantum strings do in non-thermal pure quantum radiation (no information
loss).(vi) New lower string bounds are given for the Kerr-Newman black hole
angular momentum and charge, which are entirely different from the upper
classical bounds. (vii) Semiclassical gravity states undergo a phase transition
into quantum string states of the same system, these states are duals of each
other in the precise sense of the usual classical-quantum (wave-particle)
duality, which is universal irrespective of any symmetry or isommetry of the
space-time and of the number or the kind of space-time dimensions.Comment: review paper, no figures. to appear in Int Jour Mod Phys
Semiclassical thermodynamics of scalar fields
We present a systematic semiclassical procedure to compute the partition
function for scalar field theories at finite temperature. The central objects
in our scheme are the solutions of the classical equations of motion in
imaginary time, with spatially independent boundary conditions. Field
fluctuations -- both field deviations around these classical solutions, and
fluctuations of the boundary value of the fields -- are resummed in a Gaussian
approximation. In our final expression for the partition function, this
resummation is reduced to solving certain ordinary differential equations.
Moreover, we show that it is renormalizable with the usual 1-loop counterterms.Comment: 24 pages, 5 postscript figure
QFT, String Temperature and the String Phase of De Sitter Space-time
The density of mass levels \rho(m) and the critical temperature for strings
in de Sitter space-time are found. QFT and string theory in de Sitter space are
compared. A `Dual'-transform is introduced which relates classical to quantum
string lengths, and more generally, QFT and string domains. Interestingly, the
string temperature in De Sitter space turns out to be the Dual transform of the
QFT-Hawking-Gibbons temperature. The back reaction problem for strings in de
Sitter space is addressed selfconsistently in the framework of the `string
analogue' model (or thermodynamical approach), which is well suited to combine
QFT and string study.We find de Sitter space-time is a self-consistent solution
of the semiclassical Einstein equations in this framework. Two branches for the
scalar curvature R(\pm) show up: a classical, low curvature solution (-), and a
quantum high curvature solution (+), enterely sustained by the strings. There
is a maximal value for the curvature R_{\max} due to the string back reaction.
Interestingly, our Dual relation manifests itself in the back reaction
solutions: the (-) branch is a classical phase for the geometry with intrinsic
temperature given by the QFT-Hawking-Gibbons temperature.The (+) is a stringy
phase for the geometry with temperature given by the intrinsic string de Sitter
temperature. 2 + 1 dimensions are considered, but conclusions hold generically
in D dimensions.Comment: LaTex, 24 pages, no figure
A quantitative comparison of cognitive performance and patient-reported symptoms in preoperative lower-grade glioma patients from two Dutch Hospitals
Background Protocols for assessment of (neuro)psychological outcomes in lower-grade glioma patients vary between hospitals. This potentially complicates generalization of these outcomes. We compared standardized scores on tests of two frequently impaired cognitive domains (attention and executive functioning (EF)), and two relevant patient-reported outcomes (PROs; depression and fatigue) of two neuro-oncological hospitals that use different measurement instruments. Material and Methods Data were used from preoperative assessments of patients with (IDH-mut) WHO grade II/III glioma tested between 2007 and 2021 at Amsterdam UMC (AMS) or at Elisabeth-Tweesteden Hospital Tilburg (ETZ). AMS patients were referred for (neuro)psychological assessment based on physician and patient preference (paper and pencil tests), whereas all ETZ patients routinely undergo screening (computerized tests). To compare scores of the different attention and EF tests we converted patientsâ performances to z-scores based on normative data. For cognitive performance, we compared scores of different cognitive flexibility tests (CST vs SAT), processing speed tests (SDC vs LDMT), and Stroop tests (Stroop I and Stroop III). PROs included the CES-D vs HADS-D and the CIS-fatigue vs MVI-general fatigue (AMS vs ETZ, resp.). Differences were tested using Fisher's, Ïâ2, and Mann-Whitney U tests. Results Assessments were done median 4 weeks (AMS, n=97, range 19-0 weeks) and 1 day (ETZ, n=106; range 14-0 days) preoperatively. Age, sex, tumor location and histology were comparable between cohorts (p>0.05), but the AMS cohort showed significantly more grade III tumors (36% vs 16%) and more awake surgeries (84% vs 46%). Z-scores measuring attention and EF (n=94 and n=95, AMS vs ETZ) were not significantly different (CST vs SAT, percentage with a disorder (z <-1.5SD) 15% vs 13%; SDC vs LDMT 13% vs 14%; Stroop I 11% vs 18%; Stroop III 13% vs 16% at AMS and ETZ, resp.). Percentages of patients with possible depression (CES-Dâ„16, n=88 and HADS-Dâ„8, n=106) did not differ significantly between hospitals (28% vs 26%), nor did percentages of patients with severe fatigue (CIS-fatigueâ„35, n=88 and MVI-general fatigue (z <-1.5SD), n=38, 42% vs 24% at AMS and ETZ, resp.). Conclusion Standardized scores of glioma patients on cognitive domains (attention and EF) and PROs (depression and fatigue) did not differ between two centers with slightly different samples using different testing protocols. This cautiously suggests that study findings on cognitive functioning and symptoms could be generalized. For research purposes, conjoint use of pooled populations for outcome evaluation could be explored with different samples from other centers using different instruments
Localised and nonlocalised structures in nonlinear lattices with fermions
We discuss the quasiclassical approximation for the equations of motions of a
nonlinear chain of phonons and electrons having phonon mediated hopping.
Describing the phonons and electrons as even and odd grassmannian functions and
using the continuum limit we show that the equations of motions lead to a
Zakharov-like system for bosonic and fermionic fields. Localised and
nonlocalised solutions are discussed using the Hirota bilinear formalism.
Nonlocalised solutions turn out to appear naturally for any choice of wave
parameters. The bosonic localised solution has a fermionic dressing while the
fermionic one is an oscillatory localised field. They appear only if some
constraints on the dispersion are imposed. In this case the density of fermions
is a strongly localised travelling wave. Also it is shown that in the multiple
scales approach the emergent equation is linear. Only for the resonant case we
get a nonlinear fermionic Yajima-Oikawa system. Physical implications are
discussed.Comment: 7 pages, LaTeX, no figures. to appear in Europhysics Latter
Thermal Conditions for Scalar Bosons in a Curved Space Time
The conditions that allow us to consider the vacuum expectation value of the
energy-momentum tensor as a statistical average, at some particular
temperature, are given. When the mean value of created particles is stationary,
a planckian distribution for the field modes is obtained. In the massless
approximation, the temperature dependence is as that corresponding to a
radiation dominated Friedmann-like model.Comment: 14 pages (TeX manuscript
On the complete analytic structure of the massive gravitino propagator in four-dimensional de Sitter space
With the help of the general theory of the Heun equation, this paper
completes previous work by the authors and other groups on the explicit
representation of the massive gravitino propagator in four-dimensional de
Sitter space. As a result of our original contribution, all weight functions
which multiply the geometric invariants in the gravitino propagator are
expressed through Heun functions, and the resulting plots are displayed and
discussed after resorting to a suitable truncation in the series expansion of
the Heun function. It turns out that there exist two ranges of values of the
independent variable in which the weight functions can be divided into
dominating and sub-dominating family.Comment: 21 pages, 9 figures. The presentation has been further improve
Impediments to mixing classical and quantum dynamics
The dynamics of systems composed of a classical sector plus a quantum sector
is studied. We show that, even in the simplest cases, (i) the existence of a
consistent canonical description for such mixed systems is incompatible with
very basic requirements related to the time evolution of the two sectors when
they are decoupled. (ii) The classical sector cannot inherit quantum
fluctuations from the quantum sector. And, (iii) a coupling among the two
sectors is incompatible with the requirement of physical positivity of the
theory, i.e., there would be positive observables with a non positive
expectation value.Comment: RevTex, 21 pages. Title slightly modified and summary section adde
Color Reflection Invariance and Monopole Condensation in QCD
We review the quantum instability of the Savvidy-Nielsen-Olesen (SNO) vacuum
of the one-loop effective action of SU(2) QCD, and point out a critical defect
in the calculation of the functional determinant of the gluon loop in the SNO
effective action. We prove that the gauge invariance, in particular the color
reflection invariance, exclude the unstable tachyonic modes from the gluon loop
integral. This guarantees the stability of the magnetic condensation in QCD.Comment: 28 pages, 3 figures, JHEP styl
- âŠ