4,122 research outputs found

    Fluctuation Spectrum from a Scalar-Tensor Bimetric Gravity Theory

    Get PDF
    Predictions of the CMB spectrum from a bimetric gravity theory (gr-qc/0101126) are presented. The initial inflationary period in BGT is driven by a vanishingly small speed of gravitational waves v_g in the very early universe. This initial inflationary period is insensitive to the choice of scalar field potential and initial values of the scalar field. After this initial period of inflation, v_g will increase rapidly and the effects of a potential will become important. We show that a quadratic potential introduced into BGT yields an approximately flat spectrum with inflation parameters: n_s=0.98, n_t=-0.027, alpha_s=-3.2e-4 and alpha_t=-5.0e-4, with r >= 0.014.Comment: 14 pages, uses amsmath, amssym

    Effects of Foreground Contamination on the Cosmic Microwave Background Anisotropy Measured by MAP

    Full text link
    We study the effects of diffuse Galactic, far-infrared extragalactic source, and radio point source emission on the cosmic microwave background (CMB) anisotropy data anticipated from the MAP experiment. We focus on the correlation function and genus statistics measured from mock MAP foreground-contaminated CMB anisotropy maps generated in a spatially-flat cosmological constant dominated cosmological model. Analyses of the simulated MAP data at 90 GHz (0.3 deg FWHM resolution smoothed) show that foreground effects on the correlation function are small compared with cosmic variance. However, the Galactic emission, even just from the region with |b| > 20 deg, significantly affects the topology of CMB anisotropy, causing a negative genus shift non-Gaussianity signal. Given the expected level of cosmic variance, this effect can be effectively reduced by subtracting existing Galactic foreground emission models from the observed data. IRAS and DIRBE far-infrared extragalactic sources have little effect on the CMB anisotropy. Radio point sources raise the amplitude of the correlation function considerably on scales below 0.5 deg. Removal of bright radio sources above a 5 \sigma detection limit effectively eliminates this effect. Radio sources also result in a positive genus curve asymmetry (significant at 2 \sigma) on 0.5 deg scales. Accurate radio point source data is essential for an unambiguous detection of CMB anisotropy non-Gaussianity on these scales. Non-Gaussianity of cosmological origin can be detected from the foreground-subtracted CMB anisotropy map at the 2 \sigma level if the measured genus shift parameter |\Delta\nu| >= 0.02 (0.04) or if the measured genus asymmetry parameter |\Delta g| >= 0.03 (0.08) on a 0.3 (1.0) deg FWHM scale.Comment: 26 pages, 7 figures, Accepted for Publication in Astrophysical Journal (Some sentences and figures modified

    Computational Study of Turbulent-Laminar Patterns in Couette Flow

    Full text link
    Turbulent-laminar patterns near transition are simulated in plane Couette flow using an extension of the minimal flow unit methodology. Computational domains are of minimal size in two directions but large in the third. The long direction can be tilted at any prescribed angle to the streamwise direction. Three types of patterned states are found and studied: periodic, localized, and intermittent. These correspond closely to observations in large aspect ratio experiments.Comment: 4 pages, 5 figure

    Two-Dimensional Topology of the 2dF Galaxy Redshift Survey

    Full text link
    We study the topology of the publicly available data released by the 2dFGRS. The 2dFGRS data contains over 100,000 galaxy redshifts with a magnitude limit of b_J=19.45 and is the largest such survey to date. The data lie over a wide range of right ascension (75 degree strips) but only within a narrow range of declination (10 degree and 15 degree strips). This allows measurements of the two-dimensional genus to be made. The NGP displays a slight meatball shift topology, whereas the SGP displays a bubble like topology. The current SGP data also have a slightly higher genus amplitude. In both cases, a slight excess of overdense regions are found over underdense regions. We assess the significance of these features using mock catalogs drawn from the Virgo Consortium's Hubble Volume LCDM z=0 simulation. We find that differences between the NGP and SGP genus curves are only significant at the 1 sigma level. The average genus curve of the 2dFGRS agrees well with that extracted from the LCDM mock catalogs. We compare the amplitude of the 2dFGRS genus curve to the amplitude of a Gaussian random field with the same power spectrum as the 2dFGRS and find, contradictory to results for the 3D genus of other samples, that the amplitude of the GRF genus curve is slightly lower than that of the 2dFGRS. This could be due to a a feature in the current data set or the 2D genus may not be as sensitive as the 3D genus to non-linear clustering due to the averaging over the thickness of the slice in 2D. (Abridged)Comment: Submitted to ApJ A version with Figure 1 in higher resolution can be obtained from http://www.physics.drexel.edu/~hoyle

    Detecting Pulsars with Interstellar Scintillation in Variance Images

    Full text link
    Pulsars are the only cosmic radio sources known to be sufficiently compact to show diffractive interstellar scintillations. Images of the variance of radio signals in both time and frequency can be used to detect pulsars in large-scale continuum surveys using the next generation of synthesis radio telescopes. This technique allows a search over the full field of view while avoiding the need for expensive pixel-by-pixel high time resolution searches. We investigate the sensitivity of detecting pulsars in variance images. We show that variance images are most sensitive to pulsars whose scintillation time-scales and bandwidths are close to the subintegration time and channel bandwidth. Therefore, in order to maximise the detection of pulsars for a given radio continuum survey, it is essential to retain a high time and frequency resolution, allowing us to make variance images sensitive to pulsars with different scintillation properties. We demonstrate the technique with Murchision Widefield Array data and show that variance images can indeed lead to the detection of pulsars by distinguishing them from other radio sources.Comment: 8 papes, 9 figures, accepted for publication in MNRA

    Gaussianity of Degree-Scale Cosmic Microwave Background Anisotropy Observations

    Full text link
    We present results from a first test of the Gaussianity of degree-scale cosmic microwave background (CMB) anisotropy. We investigate Gaussianity of the CMB anisotropy by studying the topology of CMB anisotropy maps from the QMAP and Saskatoon experiments. We also study the QMASK map, a combination map of the QMAP and Saskatoon data. We measure the genus from noise-suppressed Wiener-filtered maps at an angular scale of about 1.5 degrees. To test the Gaussianity of the observed anisotropy, we compare these results to those derived from a collection of simulated maps for each experiment in a Gaussian spatially-flat cosmological constant dominated cold dark matter model. The genus-threshold level relations of the QMAP and Saskatoon maps are consistent with Gaussianity. While the combination QMASK map has a mildly non-Gaussian genus curve which is not a consequence of known foreground contamination, this result is not statistically significant at the 2 sigma level. These results extend previous upper limits on the non-Gaussianity of the large angular scale (> 10 degrees) CMB anisotropy (measured by the COBE DMR experiment) down to degree angular scales.Comment: 15 pages, 4 figures, Submitted to Ap

    Energy conditions in f(R) gravity and Brans-Dicke theories

    Full text link
    The equivalence between f(R) gravity and scalar-tensor theories is invoked to study the null, strong, weak and dominant energy conditions in Brans-Dicke theory. We consider the validity of the energy conditions in Brans-Dicke theory by invoking the energy conditions derived from a generic f(R) theory. The parameters involved are shown to be consistent with an accelerated expanding universe.Comment: 9 pages, 1 figure, to appear in IJMP

    Room-temperature exciton-polaritons with two-dimensional WS2

    Full text link
    Two-dimensional transition metal dichalcogenides exhibit strong optical transitions with significant potential for optoelectronic devices. In particular they are suited for cavity quantum electrodynamics in which strong coupling leads to polariton formation as a root to realisation of inversionless lasing, polariton condensationand superfluidity. Demonstrations of such strongly correlated phenomena to date have often relied on cryogenic temperatures, high excitation densities and were frequently impaired by strong material disorder. At room-temperature, experiments approaching the strong coupling regime with transition metal dichalcogenides have been reported, but well resolved exciton-polaritons have yet to be achieved. Here we report a study of monolayer WS2_2 coupled to an open Fabry-Perot cavity at room-temperature, in which polariton eigenstates are unambiguously displayed. In-situ tunability of the cavity length results in a maximal Rabi splitting of ℏΩRabi=70\hbar \Omega_{\rm{Rabi}} = 70 meV, exceeding the exciton linewidth. Our data are well described by a transfer matrix model appropriate for the large linewidth regime. This work provides a platform towards observing strongly correlated polariton phenomena in compact photonic devices for ambient temperature applications.Comment: 12 pages, 6 figure

    On Collisionless Electron-Ion Temperature Equilibration in the Fast Solar Wind

    Full text link
    We explore a mechanism, entirely new to the fast solar wind, of electron heating by lower hybrid waves to explain the shift to higher charge states observed in various elements in the fast wind at 1 A.U. relative to the original coronal hole plasma. This process is a variation on that previously discussed for two temperature accretion flows by Begelman & Chiueh. Lower hybrid waves are generated by gyrating minor ions (mainly alpha-particles) and become significant once strong ion cyclotron heating sets in beyond 1.5 R_sun. In this way the model avoids conflict with SUMER electron temperature diagnostic measurements between 1 and 1.5 R_sun. The principal requirement for such a process to work is the existence of density gradients in the fast solar wind, with scale length of similar order to the proton inertial length. Similar size structures have previously been inferred by other authors from radio scintillation observations and considerations of ion cyclotron wave generation by global resonant MHD waves.Comment: 32 pages including 11 figures, 4 tables, accepted by Ap
    • 

    corecore