29 research outputs found

    The QTL Mapping of the important breeding traits in winter triticale (×Triticosecale Wittm.)

    Get PDF
    The increasing economic importance of triticale (×Triticosecale Wittm.) makes this synthetic hybrid cereal an interesting object of genetic studies. Genomic regions (QTL) of morphological winter triticale traits were determined using the mapping population of 89 doubled haploids lines (DHs) developed from F1 hybrid of cv. ‘Hewo’ and cv. ‘Magnat’ accompanied with the genetic map consisting of 20 linkage groups assigned to the A (7), B (7), and R (6) genomes (total of 3539 DArT, SNP-DArT and SSR markers, length of 4997.4 cM). Five independent experiments were performed in the field and greenhouse controlled conditions. A total of 12 major QTLs located on 2B, 5A, 5R, and 6B chromosomes connected to the stem length, the plant height, the spike length, the number of the productive spikelets per spike, the number of grains per spike, and the thousand kernel weight were identified by a composite interval mapping (CIM)

    Microtubule configurations and nuclear DNA synthesis during initiation of suspensor-bearing embryos from Brassica napus cv. Topas microspores

    Get PDF
    In the new Brassica napus microspore culture system, wherein embryos with suspensors are formed, ab initio mimics zygotic embryogenesis. The system provides a powerful in vitro tool for studying the diverse developmental processes that take place during early stages of plant embryogenesis. Here, we studied in this new culture system both the temporal and spatial distribution of nuclear DNA synthesis places and the organization of the microtubular (MT) cytoskeleton, which were visualized with a refined whole mount immunolocalization technology and 3D confocal laser scanning microscopy. A ‘mild’ heat stress induced microspores to elongate, to rearrange their MT cytoskeleton and to re-enter the cell cycle and perform a predictable sequence of divisions. These events led to the formation of a filamentous suspensor-like structure, of which the distal tip cell gave rise to the embryo proper. Cells of the developing pro-embryo characterized endoplasmic (EMTs) and cortical microtubules (CMTs) in various configurations in the successive stages of the cell cycle. However, the most prominent changes in MT configurations and nuclear DNA replication concerned the first sporophytic division occurring within microspores and the apical cell of the pro-embryo. Microspore embryogenesis was preceded by pre-prophase band formation and DNA synthesis. The apical cell of the pro-embryo exhibited a random organization of CMTs and, in relation to this, isotropic expansion occurred, mimicking the development of the apical cell of the zygotic situation. Moreover, the apical cell entered the S phase shortly before it divided transversally at the stage that the suspensor was 3–8 celled
    corecore