155 research outputs found

    Three-dimensional simulations of solar magneto-convection including effects of partial ionization

    Full text link
    Over the last decades, realistic 3D radiative-MHD simulations have become the dominant theoretical tool for understanding the complex interactions between the plasma and the magnetic field on the Sun. Most of such simulations are based on approximations of magnetohydrodynamics, without directly considering the consequences of the very low degree of ionization of the solar plasma in the photosphere and bottom chromosphere. The presence of large amount of neutrals leads to a partial decoupling of the plasma and the magnetic field. As a consequence of that, a series of non-ideal effects (ambipolar diffusion, Hall effect and battery effect) arises. The ambipolar effect is the dominant one in the solar chromosphere. Here we report on the first three-dimensional realistic simulations of magneto-convection including ambipolar diffusion and battery effects. The simulations are done using the newly developed Mancha3D code. Our results reveal that ambipolar diffusion causes measurable effects on the amplitudes of waves excited by convection in the simulations, on the absorption of Poynting flux and heating and on the formation of chromospheric structures. We provide a low limit on the chromospheric temperature increase due to the ambipolar effect using the simulations with battery-excited dynamo fields.Comment: To appear in Astronomy & Astrophysic

    Numerical simulations of quiet Sun magnetic fields seeded by Biermann battery

    Full text link
    The magnetic fields of the quiet Sun cover at any time more than 90\% of its surface and their magnetic energy budget is crucial to explain the thermal structure of the solar atmosphere. One of the possible origins of these fields is due to the action of local dynamo in the upper convection zone of the Sun. Existing simulations of the local solar dynamo require an initial seed field, and sufficiently high spatial resolution, in order to achieve the amplification of the seed field to the observed values in the quiet Sun. Here we report an alternative model of seeding based on the action of the Bierman battery effect. This effect generates a magnetic field due to the local imbalances in electron pressure in the partially ionized solar plasma. We show that the battery effect self-consistently creates from zero an initial seed field of a strength of the order of micro G, and together with dynamo amplification, allows the generation of quiet Sun magnetic fields of a similar strength to those from solar observations.Comment: To appear in Astronomy & Astrophysic

    Quality of Life after Stroke

    Get PDF

    Modeling the thermal conduction in the solar atmosphere with the code MANCHA3D

    Full text link
    Thermal conductivity is one of the important mechanisms of heat transfer in the solar corona. In the limit of strongly magnetized plasma, it is typically modeled by Spitzer's expression where the heat flux is aligned with the magnetic field. This paper describes the implementation of the heat conduction into the code MANCHA3D with an aim of extending single-fluid MHD simulations from the upper convection zone into the solar corona. Two different schemes to model heat conduction are implemented: (1) a standard scheme where a parabolic term is added to the energy equation, and (2) a scheme where the hyperbolic heat flux equation is solved. The first scheme limits the time step due to the explicit integration of a parabolic term, which makes the simulations computationally expensive. The second scheme solves the limitations on the time step by artificially limiting the heat conduction speed to computationally manageable values. The validation of both schemes is carried out with standard tests in one, two, and three spatial dimensions. Furthermore, we implement the model for heat flux derived by Braginskii (1965) in its most general form, when the expression for the heat flux depends on the ratio of the collisional to cyclotron frequencies of the plasma, and, therefore on the magnetic field strength. Additionally, our implementation takes into account the heat conduction in parallel, perpendicular, and transverse directions, and provides the contributions from ions and electrons separately. The model also transitions smoothly between field-aligned conductivity and isotropic conductivity for regions with a low or null magnetic field. Finally, we present a two-dimensional test for heat conduction using realistic values of the solar atmosphere where we prove the robustness of the two schemes implemented.Comment: 11 pages, 8 figure

    Formation of MnI lines in the solar atmosphere

    Full text link
    We present a detailed NLTE analysis of 39 MnI lines in the solar spectrum. The influence of NLTE effects on the line formation and element abundance is investigated. Our goal is the derivation of solar log gfe values for manganese lines, which will later be used in differential abundance analysis of metal-poor stars. The method of spectrum synthesis is employed, which is based on a solar model atmosphere with initially specified element abundances. A manganese abundance of 5.47 dex is used with the theoretical line-blanketed model atmosphere. Statistical equilibrium calculations are carried out for the model atom, which comprises 245 and 213 levels for MnI and MnII, respectively. Photoionization cross-sections are assumed hydrogenic. For line synthesis van der Waals broadening is calculated according to Anstee & O'Mara's formalism. It is shown that hyperfine structure of the Mn lines also has strong broadening effects, and that manganese is prone to NLTE effects in the solar atmosphere. The nature of the NLTE effects and the validity of the LTE approach are discussed in detail. The role of photoionization and collisional interaction is investigated.Comment: 17 pages, 27 figures, accepted for publication in A&

    Roman Religion and Cults on the Danube Limes in Serbia

    Get PDF
    Among different spheres of daily life led by Roman soldiers in the forts along the Danube Limes, one of the important ones was the sphere of spiritual culture, beliefs and religion. Although with the process of Romanisation, the official pantheon of Roman deities was introduced to the indigenous population, with the building and development of the defence frontier system on the Danube and Roman legions and auxiliary units who were stationed there, came soldiers of different origin and provenience, who brought with them their own religious beliefs and deities. Epigraphic and archaeological monuments found in the Danube Limes localities testify to the degree of acceptance or resistance of the autochthonous inhabitants towards different Roman, Hellenised and Oriental cults and show some very interesting examples of syncretism of the mentioned cults with unknown, indigenous gods and goddesses

    Stroke Recurrences - Quality of Secondary Prevention

    Get PDF

    Joint action of Hall and ambipolar effects in 3D magneto-convection simulations of the quiet Sun. I. Dissipation and generation of waves

    Full text link
    The partial ionization of the solar plasma causes several nonideal effects such as the ambipolar diffusion, the Hall effect, and the Biermann battery effect. Here we report on the first three-dimensional realistic simulations of solar local dynamo where all three effects were taken into account. The simulations started with a snapshot of already saturated battery-seeded dynamo, where two new series were developed: one with solely ambipolar diffusion and another one also taking into account the Hall term in the generalized Ohm's law. The simulations were then run for about 4 hours of solar time to reach the stationary regime and improve the statistics. In parallel, a purely MHD dynamo simulation was also run for the same amount of time. The simulations are compared in a statistical way. The results show that, with the inclusion of the ambipolar diffusion, the amplitudes of the incompressible perturbations related to Alfven waves are reduced, and the Poynting flux is absorbed, with a frequency dependence. The Hall effect causes the opposite action: significant excess of incompressible perturbations is generated and an excess of the Poynting flux is observed in the chromospheric layers. The model with ambipolar diffusion shows, on average, sharper current sheets and slightly more abundant fast magneto-acoustic shocks in the chromosphere. The model with the Hall effect has higher temperatures at the lower chromosphere and stronger and more vertical magnetic field concentrations all over the chromosphere. The study of high-frequency waves reveals that significant power of incompressible perturbations is associated with areas with intense and more vertical magnetic fields and larger temperatures. We find a positive correlation between the magnitude of the ambipolar heating and the temperature increase at the same location after a characteristic time of 10^2 sec.Comment: To appear in Astronomy & Astrophysic

    Optimal source localization problem based on TOA measurements

    Get PDF
    Determining an optimal emitting source location based on the time of arrival (TOA) measurements is one of the important problems in Wireless Sensor Networks (WSNs). The nonlinear least-squares (NLS) estimation technique is employed to obtain the location of an emitting source. This optimization problem has been formulated by the minimization of the sum of squared residuals between estimated and measured data as the objective function. This paper presents a hybridization of Genetic Algorithm (GA) for the determination of the global optimum solution with the local search Newton-Raphson (NR) method. The corresponding Cramer-Rao lower bound (CRLB) on the localization errors is derived, which gives a lower bound on the variance of any unbiased estimator. Simulation results under different signal-to-noise-ratio (SNR) conditions show that the proposed hybrid Genetic Algorithm-Newton-Raphson (GA-NR) improves the accuracy and efficiency of the optimal solution compared to the regular GA
    corecore